

Порошковая рентгеновская дифракция. Рентгенофазовый анализ.

1. Немного теории

- 1.1 Рентгеновское излучение (РИ): что это такое
- 1.2 Взаимодействие РИ с веществом
- 1.3 Дифракция РИ. Закон Брегга.
- 1.4 Кристаллические вещества и дифракция РИ.

2. И зачем все это нужно?

- 2.1 Качественный РФА
- 2.2 Количественный РФА
- 2.3 Индицирование дифрактограмм
- 2.4 PCA

3. И как все это сделать?

- 3.1 Порошковый дифрактометр.
- 3.2 Пробоподготовка.
- 3.3 Первичная обработка дифрактограмм
- 3.4 Главные правила дифрактометриста

1.1. Рентгеновское излучение (РИ)

РИ (X-Rays, Röntgenstrahlung) – электромагнитное излучение с $\lambda = 5 \times 10^{-2} \div 10^{2}$ Å. (E = 250 кэВ – 100 эВ).

В.К.Рентген

1-я Нобелевская премия по физике (1901)

И еще 16 Нобелевских премий за 111 лет Энергия связи электронов на низшей (К) оболочке атомов:

Н: 13.6 эВ (= Ry) → Ве: 115.6 эВ → <u>Сu: 8.983 кэВ</u> → Pu: 121.768 кэВ

Характеристическое РИ:

Например, для <u>Си <i>К</i>-с</u>	ерии:	
$I\alpha_1:I\alpha_2:I\beta_1\approx 10:5:2$	λ	<i>К</i> _{α1} для
$\lambda_{lpha 1}$ = 1.5406 Å $\lambda_{lpha 2}$ = 1.5444 Å $\lambda_{eta 1}$ = 1.3930 Å λ_{lpha} = 1.5418 Å	Ag Mo Co Fe Cr	0.5594 Á 0.7093 Á 1.7890 Á 1.9360 Á 2.2897 Á

 $E(K\alpha) = E_{1s} - E_{2p}$

$$\begin{array}{l} {\sf K} \alpha_1 \,=\, 2p_{3/2} \to \, 1s \\ {\sf K} \beta_1 \,=\, 3p_{3/2} \to \, 1s \\ {\sf L} \alpha_1 \,=\, 3d_{3/2} \to \, 2p_{1/2} \end{array}$$

Кстати, рентгеновские спектры – удобный материал для анализа химического состава!

1.1 Источники РИ и его спектральный состав

1.2 Взаимодействие РИ с веществом.

Взаимодействие РИ с веществом

Типичный спектр рассеянного излучения

Упругое рассеяние

• Релеевское рассеяние

$$\lambda_P = \lambda_S$$

Неупругое рассеяние

• Комптоновское рассеяние – взаимодействие со слабо связанным электроном

$$\lambda_{s} = \lambda_{P} + \frac{h}{m_{e}c}(1 - \cos\alpha)$$

• Фотоэффект и последующая рентгеновская флуоресценция

$$\lambda_P > \lambda_S = \lambda_{K,L,M...}^X$$

Упругое когерентное рассеяние

• Дифракция

$$\lambda_P = \lambda_S$$

для когерентного рассеяния первичного пучка

1.2 Взаимодействие РИ с веществом.

1.3 Дифракция рентгеновского излучения

<u>Дифракция рентгеновского излучения – когерентное упругое</u> рассеяние рентгеновского излучения с интерференцией вторичных

1.3 Дифракция рентгеновского излучения

Попробуем разобраться...

А как описать процесс дифракции математически?

1.3 Закон Брегга

Разность хода волн:

$$\Delta = d\sin\theta + d\sin\theta = 2d\sin\theta$$

Условие позитивной интерференции:

$$\Delta = n\lambda$$

 $2d\sin\theta = n\lambda$

Мы можем определить, где будет максимум!

Осталось только:

- 1. Найти где-нибудь плоскости.
- Направить на них пучок (монохроматический) под нужным углом.
- Убедиться в правильности закона и в том, что *n* = 1

Поговорим о плоскостях...

Кристалл – атомная система, характеризующаяся:

- 1) Дальним порядком
- 2) Периодичностью (обычно 3-х мерной).

Параметры элементарной ячейки («кирпичика» кристалла): длины сторон **а, b, c,** углы **α, β, γ**.

1.4 Кристаллические вещества

Периодичность – т.н. трансляционная симметрия – основное свойство кристалла. Какие другие виды симметрии могут быть у кристаллов?

Оси 1,2,3,4,6 порядков – поворотные и поворотно-инверсионные

Винтовые оси, плоскости скользящего отражения.

1.4 Сингонии (решетки Браве)

Сингония	Определяющие элементы симметрии	условия на параметры элементарных ячеек	Возможные центрировки
триклинная	нет осей выше 1 порядка	отсутствуют	Р
моноклинная	существует и единственно направление, вдоль которого ось не выше 2 порядка	$\alpha = \gamma = 90^{\circ}$	P, C
орторомбическая	существует более одного направления (min 3), вдоль которых оси не выше 2 порядка	$\alpha = \beta = \gamma = 90^{\circ}$	P, C, I, F
тетрагональная	существует и единственно направление, вдоль которого ось 4 порядка	$a = b, \ \alpha = \beta = \gamma = 90^{\circ}$	Р, І
тригональная	существует и единственно направление, вдоль которого ось 3 порялка	$a = b, \ \alpha = \beta = 90^{\circ},$ $\gamma = 120^{\circ}$	Р
		$a=b=c, \ \alpha=\beta=\gamma$	R
гексагональная	существует и единственно направление, вдоль которого ось 6 порядка	$a = b, \ \alpha = \beta = 90^{\circ},$ $\gamma = 120^{\circ}$	Р
кубическая	существует более одного направления (min 4), вдоль которых оси 3 порядка	a = b = c, $\alpha = \beta = \gamma = 90^{\circ}$	P, I, F

Совокупность всех операций симметрии = группа симметрии кристалла (пространственная группа)

Всего существует 230 3D пространственных групп (т.н. федоровские группы)

Е.С.Федоров

1.4 Кристаллические вещества

SrTiO₃ – титанат стронция

- 1. $a = b = c = 3.9046 \text{ Å}, \ \alpha = \beta = \gamma = 90^{\circ},$
 - *V* = 59.53 Å
- 2. Кубическая сингония
- $Pm\overline{3}m$
- 3. Пространственная группа:
- 4. Z = 1
- 5. Атомные позиции:

Атом	Позиция	g	x/a	y/b	z/c
Sr	1 <i>a</i>	1.0	0.0	0.0	0.0
Ti	1 <i>b</i>	1.0	0.5	0.5	0.5
0	3 <i>c</i>	1.0	0.5	0.5	0.0

1.4 Кристаллографические плоскости

<u>Кристаллографические плоскости –</u> параллельные плоскости, пересекающие все(!) узлы кристаллической решетки

Плоскости (200)

Индексы кристаллографической плоскости (*hkl*)– число долей, на которые делит плоскость оси a,b,c

$h,k,l\in Z$

Индексы (hkl) – индексы Миллера

- 1. Реальных плоскостей в кристалле не существует!
 - 2. Кристаллографические плоскости параллельны друг другу

 Расстояние между
 кристаллографическими плоскостями
 т.н. межплоскостное расстояние d_{hkl}
 важный параметр в теории дифракции

Так что же с плоскостями в кристаллах?

1. Межплоскостные расстояния зависят от параметров элементарной ячейки и индексов Миллера.

 $\frac{1}{d^2} = \frac{\frac{h^2}{a^2 \sin^2 \alpha} + \frac{2kl}{bc} (\cos \beta \cos \gamma - \cos \alpha) + \frac{k^2}{b^2 \sin^2 \beta} + \frac{2hl}{ac} (\cos \alpha \cos \gamma - \cos \beta) + \frac{l^2}{c^2 \sin^2 \gamma} + \frac{2hk}{ab} (\cos \alpha \cos \beta - \cos \gamma)}{1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2\cos \alpha \cos \beta \cos \gamma}$

Не все так страшно!

Для кубических кристаллов, например, $d_{\rm hkl} = a/(h^2 + k^2 + l^2)^{1/2}$

Значит, зная положения максимумов и их индексы можно определить параметры ячейки!

2. Не стоит сопоставлять кристаллографические плоскости и реальные структурные элементы.

3. Необходимая ориентация плоскостей достигается за счет случайной ориентации частиц порошка!

- 1. Какие фазы присутствуют в образце? качественный рентгенофазовый анализ
- Объемная (и, т.о., массовая) доля фазы в образце v₀
 количественный рентгенофазовый анализ
- 3. Качественные и количественные данные об аморфных фазах в образце.
- 1. Преимущественная ориентация кристаллитов в образце текстурный анализ
- 2. Данные о размерах ОКР и концентрации микронапряжений анализ микроструктуры
- 3. Кристаллическая структура соединения структурный анализ
- 4. Параметры пленок/покрытий (толщина, плотность).

- 1. Дифрактограмма = **«отпечаток пальца»** кристаллической фазы.
- Дифрактограмма смеси фаз = суперпозиция дифрактограмм отдельных фаз.
- 2. Относительные интенсивности максимумов от разных фаз связаны с содержанием фаз в смеси ключ к количественному РФА.
- 3. Как по виду дифрактограммы определить, что за фазы присутствуют в

смеси? - Сравнение с дифрактограммами стандартов.

A comprehensive database of powder diffraction patterns – ICDD PDF

(see: www.icdd.com)

Roloaso 2005

	PDF-2	PDF-4 +	PDF-4	PDF-4
Entry Source			(Minerals)	(Organics)
Experimental	96,493	96,493	9,083	26,792
FIZ	68,404	59,223	7,507	1,202
CCDC	0	0	0	237,200
NIST	9,802	5,565	70	14
MPDS	0	78,769	1,166	0
Total No. of Data	a sets 174,699	240,050	17,826	265,208

(International Centre for Diffraction Data)

Формат «карточки» (записи о стандарте) PDF-2 в WinXPow.

[81-1286]	PDF-2	Sets	1-99	Qual	ity: C		Wav	elengt	ch: 1.	540598
Lead Vanad	dium Oxid	e Phos	sphate			· · · · · · · · · · · · · · · · · · ·				
Pb3 (P V	08)									
Rad.: CuKa	al (1.540	60)	Filt	cer:		<u></u>	d-sp	: calo	culated	
I/Icor.:8	.52		Cuto	off: 1	7.7	Int.: calculated				
Ref.: Calo	culated f	rom I(CSD usin	ng POWE)-12++,	(1997)				
Sys.: Rhor	mbohedral	C	5.G.: R-	-3m (16	6)	·	V (redu)	187.6	
a: 5.64410	0(20) b	:		c:	20.4031	0(60)	C: 3.614	9		
A:	В	:		C:			Z: 3	mp	:	
Dx: 7.35	7 Dm	:		SS/F	'OM: F30	= 999.9	(.0001,	33)		
ICSD: 072	2664									
Ref.: Kiat 103	t, J M. 3, (1993)	, Garn , 490	nier, P	., Calv	arin, G	., Pino	t, M., J.	Solid	d State	Chem.
ea:	nwB	:		ey:		Sign:	2V:			
REM 7	TEM 300.	// REN	/I I	RVP.						
Hanawalt:	3.13/X 2	.82/8	4.75/3	3.53/3	2.10/3	1.68/2	1.88/1 2	.20/1	1.77/1	1.63/3
Max-d:	6.80/1 4	.75/3	4.41/1	3.53/3	3.40/1	3.13/X	2.82/8 2	.61/1	2.50/1	2.43/3
d[A]	2Theta	Int.	h	k l		d[A]	2Theta	Int.	h	k l
6.8010	13.007	10	0	0 3		1.3602	68.986	6	0	0 15
4.7534	18.652	326	1	0 1		1.3527	69.425	7	1	3 1

Финальная стадия поиска – визуальный анализ соответствия «стандарт – эксперимент»

Критерии соответствия:

- 1. Все линии стандарта должны присутствовать на экспериментальной дифрактограмме
- 2. Соотношение интенсивностей?
- 3. Качество стандарта *, I, C
- 4. Химический состав «образец/стандарт»

Только соотношение кристаллических фаз!

2.3 Индицирование дифрактограмм

N	Н	K	L	Int.	d[obs]	Q[obs]	h2+k2+l2	Q[calc]
1 *	1	1	0	0.3	8.8360	128.1	2	128.0
2 *	2	0	0	11.8	6.2538	255.7	4	256.0
3 *	2	1	0	7.2	5.5934	319.6	5	320.0
4 *	2	1	1	23.3	5.1057	383.6	6	383.9
5 *	2	2	0	1.5	4.4208	511.7	8	511.9
6 *	2	2	1	6.2	4.1682	575.6	9	575.9
7 *	3	1	0	8	3.9542	639.6	10	639.9
8 *	3	1	1	59.7	3.7700	703.6	11	703.9
9 *	2	2	2	21.8	3.6092	767.7	12	767.9
10 *	3	2	0	8.3	3.4674	831.7	13	831.8
11 *	3	2	1	44.9	3.3414	895.7	14	895.9
12 *	4	0	0	21.2	3.1255	1023.7	16	1023.9
13 *	4	1	0	60	3.0321	1087.7	17	1087.9
14 *	3	3	0	100	2.9467	1151.7	18	1151.8
15 *	3	3	1	3.4	2.8680	1215.7	19	1215.8
16 *	4	2	0	36.8	2.7955	1279.6	20	1279.8
17 *	4	2	1	24.1	2.7282	1343.5	21	1343.8
18 *	3	3	2	47.5	2.6654	1407.6	22	1407.8
19 *	4	2	2	15.3	2.5520	1535.5	24	1535.7
20 *	4	3	0	17.4	2.5002	1599.7	25	1599.7
21 *	5	1	0	46.3	2.4516	1663.8	26	1663.8
22 *	5	1	1	2.4	2.4058	1727.8	27	1727.8
23 *	5	2	0	10.6	2.3214	1855.7	29	1855.7
24 *	5	2	1	6.8	2.2823	1919.8	30	1919.6
25 *	4	4	0	11.6	2.2098	2047.8	32	2047.6
26 *	4	4	1	6.4	2.1761	2111.7	33	2111.7
27 *	5	3	0	8.3	2.1438	2175.9	34	2175.7
28 *	5	3	1	9.2	2.1130	2239.8	35	2239.5
29 *	6	0	0	9.3	2.0834	2303.9	36	2303.6
30 *	6	1	0	1.3	2.0550	2368.0	37	2367.5
31 *	6	1	1	11.7	2.0279	2431.7	38	2431.7
32 *	6	2	0	2	1.9765	2559.8	40	2559.5
33 *	5	4	0	15.2	1.9523	2623.7	41	2623.7
34 *	5	4	1	20.7	1.9289	2687.7	42	2687.7
35 *	5	3	3	3.1	1.9063	2751.8	43	2751.5
36 *	6	2	2	1.7	1.8845	2815.8	44	2815.5
37 *	6	3	0	4.7	1.8635	2879.7	45	2879.7
38 *	6	3	1	23.1	1.8431	2943.8	46	2943.4
39 *	4	4	4	0.5	1.8041	3072.4	48	3071.4
40 *	6	3	2	9.7	1.7858	3135.7	49	3135.3

File title : Hg7SnP4Br6 Number of accepted peaks : 111 2Theta window : 0.050 Symmetry : Cubic P Spacegroup : P 21 3 (No. 198)

Refined cell parameters : Cell_A : 12.50099(7) Cell_Volume: 1953.591(19)

Number of single indexed lines : 111 Number of unindexed lines : 0

F(30) = 327.7 (0.003, 32)

F₃₀>20 : индицирование корректно

Кстати, здесь Вы встретите величину $Q = 10000/d^2$

 $Q_{\rm hkl} = Q_0(h^2 + k^2 + l^2)$

2.4 Рентгеноструктурный анализ

3.1 Порошковый дифрактометр

1. Геометрия Брегга-Брентано

3.1 Порошковый дифрактометр

3.2 Пробоподготовка

1. «На отражение»

- Ровная поверхность
- Хорошее истирание порошка
- Для кристаллитов правильной формы разбавитель (?)
- Малошумящая подложка
- При необходимости аморфное связующее (цапон-лак)

2. «На просвет»

- Ровная поверхность
- Хорошее истирание порошка!
- Аморфная пленка
- Аморфное связующее (цапон-лак)
- Тонкий слой для оптимальной интенсивности сигнала

3. «Дебая-Шеррера»

- Хорошее истирание порошка
- Капилляр 0.5 0.1 мм
- Контроль интенсивности сигнала!
- Запаяйте(заклейте) капилляр!

3.2 Пробоподготовка

Определение положения и интенсивности дифракционных максимумов (рефлексов) – ключ к фазовому анализу, индицированию, подбору структурной модели и т.д. Дифрактограмма: $I_{exp}(2\theta)$

	I,			
20	имп/сек			
20	64.48			
20.03	58.92			
20.06	86.71			
20.09	54.47			
24.11	380.21			
24.14	638.69			
24.17	738.74			
24.2	705.39			
24.23	511.4			
24.26	361.31			
53	31.13			

3.3 Первичная обработка дифрактограмм

 Профильный анализ (определение положения и интенсивности рефлексов

2. Качественный РФА!!!

3.4 Главные правила дифрактометриста

- Дифрактограмма не спектр!!!
- Дифрактограммы регистрируют, а не снимают.
- Хороший предварительный анализ (профильный анализ, промер) хороший результат.
- Образец можно подготовить плохо. И это не очень сложно. Аккуратнее!
- Рентген не оставляет наведенной радиоактивности. Не надо его бояться!
- В дифракции артефактов не бывает. Этому методу можно верить больше, чем себе.

- 1. V.K. Pecharsky & P.Y. Zavalij "Fundamentals of Powder Diffraction and Structural Characterization of Materials"
- 2. Розова М.Г., Шпанченко Р.В. «Элементы структурной неорганической химии»
- 3. Розова М.Г., Шпанченко Р.В., «Рентгенофазовый анализ»
- 4. Л.М. Ковба, В.К. Трунов «Рентгенофазовый анализ»
- 5. Л.М. Ковба, «Рентгенография в неорганической химии»
- 6. <u>www.pxrd.ucoz.ru</u>