

Качественный рентгенофазовый анализ. Базы данных ICDD.

Москва 2012. Курс для ФНМ МГУ.

Содержание

- 1. Физические основы рентгенофазового анализа.
- 2. Базы данных ICDD.
- 3. Программное обеспечение.
- 4. Некоторые практические аспекты.

1. Физические основы РФА.

- 1. Дифракция рентгеновского излучения (РИ) когерентное упругое рассеяние РИ с интерференцией вторичных волн.
- 2. Амплитуда дифрагировавшего РИ пропорциональна Фурье-компоненте электронной плотности.
- Для периодической системы монокристалла Фурье образ состоит из узких максимумов.
- 4. $3D = 3 \Phi$ урье-индекса (h, k, l индексы Миллера).
- 5. Для порошка 1D проекция 3D картины.

1. Физические основы РФА.

- 1. Распределение $\rho(\mathbf{r})$ уникально для каждого соединения.
- 2. $\rho(\mathbf{r}) \leftrightarrow$ расположение атомов
- 2. От периодичности ρ(**r**) (параметров ячейки кристалла) зависит положение максимумов.
- 3. От вида функции ρ(**r**) (распределения атомов) внутри ячейки зависит интенсивность максимумов.
- Ключ к РФА интенсивность и положения максимумов. Определить их можно с использованием **профильного анализа**.

$2d_{hkl}\sin\theta = n\lambda$

!	D	2Theta	I(rel)	I(abs)	I(int)	FWHM	Η	K	L	
	14.248472	6.1981	3.04	33	7.68	0.1781	0	1	0	
	9.814859	9.0027	6.16	66	14.78	0.1694	1	0	0	
	9.587812	9.2164	2.66	28	6.36	0.1688	1	1	0	
	7.140107	12.3866	4.38	47	9.89	0.1596	-1	1	0	М
	5.121028	17.3024	24.07	258	50.16	0.1472	-1	-1	1	
	4.758203	18.6331	25.94	278	52.98	0.1443	0	1	1	
	3.736961	23.7913	68.18	729	130.34	0.1350	0	-3	1	

1. Физические основы РФА.

- 1. Дифрактограмма = **«отпечаток пальца»** кристаллической фазы.
- Дифрактограмма смеси фаз = суперпозиция дифрактограмм отдельных фаз.
- 2. Относительные интенсивности максимумов от разных фаз связаны с содержанием фаз в смеси ключ к количественному РФА.
- 3. Как по виду дифрактограммы определить, что за фазы присутствуют в

смеси? - Сравнение с дифрактограммами стандартов.

A comprehensive database of powder diffraction patterns – ICDD PDF

(see: www.icdd.com)

Release 2005				
	PDF-2	PDF-4 +	PDF-4	PDF-4
Entry Source			(Minerals)	(Organics)
Experimental	96,493	96,493	9,083	26,792
FIZ	68,404	59,223	7,507	1,202
CCDC	0	0	0	237,200
NIST	9,802	5,565	70	14
MPDS	0	78,769	1,166	0
Total No. of Data	a sets 174,699	240,050	17,826	265,208

(International Centre for Diffraction Data)

БД PDF-2

- Постоянно редактируется, дополняется и обновляется
- Каждый год добавляется 2,500 экспериментальных

и несколько тысяч расчетных рентгенограмм.

Компьютерный поиск начиная с 1985 г.

- Содержит рентгенограммы чистых фаз
- Выпуск 2010г. содержит > 300,000 активных рентгенограмм
- Contains SINGLE PHASE patterns!!
- Сейчас доступна в двух форматах:
 - CD-ROM диск (основной формат)
 - Книги (Sets 1-51 только

экспериментальные рентгенограммы)

Новая версия базы данных – ICDD PDF-4

Каждому стандарту присваивается уникальный номер: *XX-YYY-ZZZZ* (шкаф – ящик – номер).

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	44-258						×
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		d,0	Int.	hkl	d,0	Int.	hkl
Antimony Bromide Sulfide4.8763 020 1.8970 5 $150,420$ Rad. CuKa1 λ 1.54056Filter Mono.d-sp Diff. Ulver, 3.02 112 122 112 Rad. CuKa1 λ 1.54056Filter Mono.d-sp Diff. Ulver, 3.02 112 122 112 Ref. Antipov, E., Putilin, S., Shpanchenko, R., Moscow State 3.794 16 210 1.8272 <1 401 University, Moscow, Russia. ICDD Grant-in-Aid. (1993) 3.145 9 220 1.7115 <1 151 Sys. OrthorhombicS.G. Pnam(62) 3.145 9 220 1.7115 <1 151 As 2370(5)b 9.7491(6)c 3.9646(3)A 0.8449C 0.4067 3.023 1 130 1.6774 1 222 Ref. Ibid 2 2 2 1.7115 <1 151 200 1.6266 2 $060,510$ Dikarev, E., Moscow State University, Moscow, Russia. CAS#: 2.4641 4 221 1.5380 3 042 Pattern taken at 26 C. The sample was provided by Shevelkov, A., Dikarev, E., Moscow State University, Moscow, Russia. CAS#: 2.4641 4 221 1.5380 3 042 2.4369 7 040 1.5266 3 322 2.336 2.4641 4 221 1.5380 3 042 Color Orange 2.4641 4 221 1.5380 3 042 2.3366 2.4641 4 221 1.5380 3 042	SoSBr	6.296	26	110	1.9829	22	002
Antimony Bromide Sulfide4.195271201.89022112Rad. CuKa, λ 1.54056Filter Mono.d-sp Diff.Cut off 14.7Int. DiffractometerI/I cor.3.02Ref.Antipoy.E., Putilin, S., Shpanchenko, R., Moscow State3.67360111.795512411University, Moscow, Russia.ICDD Grant-in-Aid. (1993)3.145922001.7115<1151Sys.OrthorhombicS.G. Pnam(62)3.14592201.7715<1151at 8.2370(5)b 9.7491(6)c 3.9646(3)A 0.8449C 0.40672.88181001211.65623431D.4.876D.SS/FOM F 30=158(.005,36)2.6430163101.58664312Color OrangeSS/FOM F 30=158(.005,36)2.5507323001.57301440Dikarev, E., Moscow State University, Moscow, Russia. CAS#:2.464142211.5380304214794-85-5. Prepared by heating of stoichiometric mixture of Sb, S2.464142211.538030422.436970.401.526633222.33662.1401.440822.42,3322.097283301.4124<12.61033064312D.4.991. Phys., 24 600 (1985)]. Silicon used3311.440822.42,3322.097283301.4124<12.612.09728 <td></td> <td>4.876</td> <td>3</td> <td>020</td> <td>1.8970</td> <td>5</td> <td>150,420</td>		4.876	3	020	1.8970	5	150,420
Rad. CuKa ₁ λ 1.54056Filter Mono.d-sp Diff. Ul.cor. 3.021.8272<1401Ref. Antipov, E., Putilin, S., Shpanchenko, R., Moscow State University, Moscow, Russia. <i>ICDD Grant-in-Aid.</i> (1993)3.67360111.795512411Sys. OrthorhombicS.G. Pnam(62) a $8.2370(5)$ b 9.7491(6) c 3.9646(3) A 0.8449 C 0.4067 α β 3.04849 C 0.4067 χ 3.02311301.677412223.02311301.677412222222223.042.88181001211.65623431 α β γ Z4mp 330d2.8850152011.62462060,510 α B. 4.876 $D_{\rm m}$ SS/FOM F_{30} =158(.005,36)2.6430163101.58604312Color Orange Pattern taken at 26 C. The sample was provided by Shevelkov, A., Dikarev, E., Moscow State University, Moscow, Russia. CAS#: 14794-85-5. Prepared by heating of stoichiometric mixture of Sb, S and SbBr3 in sealed silica tube at 360 C for 10 hours followed by an- nealing at 310 C for 6 days. SbBBr melts with decomposition. Single crystal cell: a=8.212, b=9.720, c=3.963, S.G.=Pnam, Z=4, [Inushima, T., Uchinokura, K., <i>Jpn. J. Appl. Phys.</i> , 24 600 (1985)]. Silicon used as external standard. PSC: oP12.2.199233111.44082242.3322.013151411.3713215315.02 fellwine and51411.37132152	Antimony Bromide Sulfide	4.195	27	120	1.8902	12	112
Rad. CuKa1 λ 1.54056Filter Mono.d-sp Diff. Uar.102101.0272<1401Cut off 14.7Int. Diffractometer $II_{car.}$ 3.023.67360111.795512411Ref. Antipov,E., Putilin,S., Shpanchenko,R., Moscow State3.35441111.76165250University, Moscow, Russia. ICDD Grant-in-Aid. (1993)3.14592201.7115<1151Sys. OrthorhombicS.G. Pnam(62)3.02311301.677412222a 8.2370(5)b 9.7491(6)c 3.9646(3)A 0.8449C 0.40672.88181001211.65623431Dx4.876DmSS/FOM F ₃₀ =158(.005,36)2.6430163101.58604312Color OrangeSS/FOM F ₃₀ =158(.005,36)2.550732301.57301440Pattern taken at 26 C. The sample was provided by Shevelkov, A., Dikarev, E., Moscow State University, Moscow, Russia. CAS#: 14794-85-5. Prepared by heating of stoichiometric mixture of Sb, S and SbBr3 in sealed silica tube at 360 C for 10 hours followed by an- nealing at 310 C for 6 days. SbSBr melts with decomposition. Single crystal cell: a=8.212, b=9.720, c=3.963, S.G.=Pnam, Z=4. [Inushima, T., Uchinokura, K., Jpn. J. Appl. Phys., 24 600 (1985)]. Silicon used as external standard. PSC: oP12.3111.44082242,332Superstandard2.199233111.44082242,3322.097283301.4124 42612612.09728 <td></td> <td>4.119</td> <td>16</td> <td>200</td> <td>1.8340</td> <td>15</td> <td>241,551 401</td>		4.119	16	200	1.8340	15	241,551 401
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rad. CuKa ₁ λ 1.54056 Filter Mono. d-sp Diff.	5.794	10	210	1.6272		401
Ref.Antipov,E., Putilin,S., Shpanchenko,R., Moscow State University, Moscow, Russia. 3.354 4 111 1.7616 5 250 Sys.Orthorhombic \mathbf{S} .G. Pnam(62) 3.145 9 220 1.7115 <1 151 Sys.Orthorhombic α $\mathbf{S.G.}$ Pnam(62) 3.145 9 220 1.7115 <1 151 \mathbf{a} $8.2370(5)$ \mathbf{b} $9.7491(6)$ \mathbf{c} $3.964(3)$ \mathbf{A} 0.8449 \mathbf{C} 0.4067 α β γ \mathbf{Z} 4 \mathbf{mp} $330d$ 2.85818 100 121 1.6562 3 431 $\mathbf{D}_{\mathbf{x}}$ 4.876 $\mathbf{D}_{\mathbf{m}}$ $\mathbf{SS/FOM}$ $\mathbf{F}_{30}=158(.005,36)$ 2.6430 16 310 1.6246 2 $060,510$ 2.4437 $\mathbf{D}_{\mathbf{m}}$ $\mathbf{SS/FOM}$ $\mathbf{F}_{30}=158(.005,36)$ 2.6430 16 310 1.5860 4 312 $\mathbf{Color Orange}$ $\mathbf{SS/FOM}$ $\mathbf{F}_{30}=158(.005,36)$ 2.5507 3 230 1.5730 1 440 2.5136 16 031 1.5656 <1 232 2.47413 12 111 1.7616 5 250 2.4641 4 221 1.5380 3 042 2.47433 2.5507 3 230 1.5730 1 440 2.5136 16 031 1.5656 <1 232 2.4641 4 221 1.5380 3 <t< td=""><td>Cut off 14.7 Int. Diffractometer $I/I_{cor.}$ 3.02</td><td>3.673</td><td>6</td><td>011</td><td>1.7955</td><td>12</td><td>411</td></t<>	Cut off 14.7 Int. Diffractometer $I/I_{cor.}$ 3.02	3.673	6	011	1.7955	12	411
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ref. Antipov, E., Putilin, S., Shpanchenko, R., Moscow State	3.354	4	111	1.7616	5	250
Sys. OrthorhombicS.G. Pnam(62) 3.023 1 130 1.6774 1 222 a $8.2370(5)$ b $9.7491(6)$ c $3.9646(3)$ A 0.8449 C 0.4067 2.8818 100 121 1.6562 3 431 Ref. Ibid γ Z 4mp $330d$ 2.8550 15 201 1.6246 2 $060,510$ $D_x 4.876$ D_m SS/FOM $F_{30}=158(.005,36)$ 2.6430 16 310 1.5860 4 312 Color OrangePattern taken at 26 C. The sample was provided by Shevelkov, A., 2.5507 3 230 1.5730 1 440 Dikarev, E., Moscow State University, Moscow, Russia. CAS#: 2.4641 4 221 1.5380 3 042 14794-85-5. Prepared by heating of stoichiometric mixture of Sb, S 2.4641 4 221 1.5380 3 042 crystal cell: a=8.212, b=9.720, c=3.963, S.G.=Pnam, Z=4, [Inushima, T., Uchinokura, K., Jpn. J. Appl. Phys., 24 600 (1985)]. Silicon used 2.1992 3 311 1.4408 2 $242,332$ 2.0972 8 330 1.4124 <1	University, Moscow, Russia. ICDD Grant-in-Aid. (1993)	3.145	9	220	1.7115	<1	151
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sys. Orthorhombic S.G. Pnam(62)	3.023	1	130	1.6774	1	222
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a 8.2370(5) b 9.7491(6) c 3.9646(3) A 0.8449 C 0.4067	2.8818	100	121	1.6562	3	431
Ref. 1bid1.02402.00701.02402.00702.0070 D_x 4.876 D_m SS/FOM $F_{30}=158(.005,36)$ 1.024311.02402.0070 $Color Orange2.0111.59353.011.58604.01431Pattern taken at 26 C. The sample was provided by Shevelkov, A.,Dikarev, E., Moscow State University, Moscow, Russia. CAS#:14794-85-5. Prepared by heating of stoichiometric mixture of Sb, Sand SbBr3 in sealed silica tube at 360 C for 10 hours followed by an-nealing at 310 C for 6 days. SbSBr melts with decomposition. Singlecrystal cell: a=8.212, b=9.720, c=3.963, S.G.=Pnam, Z=4, [Inushima,T., Uchinokura, K., Jpn. J. Appl. Phys., 24 600 (1985)]. Silicon usedas external standard. PSC: oP12.3.111.44082.19922.242,332Sae folluing andSameda3.121.02402.0160,431Cas folluing andSameda1.02401.02402.0160,431Sae folluing and1.02402.0111.059353.160,431Discourd1.02401.02401.02401.0240Discourd1.02401.02401.02401.0240Discourd1.02401.02401.02401.0240Discourd1.02401.02401.02401.0240Discourd1.02401.02401.02401.0240Discourd1.02401.02401.02401.0240Discourd1.02401.02401.02401.0240Construct1.02401.02401.02401.0240Discourd1.02401.02401.02401.0240Discourd1.0240$	α β γ Z 4 mp 330d	2 8550	15	201	1 6246	2	060 510
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Kel. 1010	2.8550	12	201	1.0240	$\frac{2}{3}$	160 431
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D 4.876 D SS/FOM $E_{1}=158(.005.36)$	2.6430	16	310	1.5860	4	312
Condition of large Pattern taken at 26 C. The sample was provided by Shevelkov, A., Dikarev, E., Moscow State University, Moscow, Russia. CAS#: $14794-85-5$. Prepared by heating of stoichiometric mixture of Sb, S and SbBr ₃ in sealed silica tube at 360 C for 10 hours followed by an- nealing at 310 C for 6 days. SbSBr melts with decomposition. Single crystal cell: a=8.212, b=9.720, c=3.963, S.G.=Pnam, Z=4, [Inushima, T., Uchinokura, K., Jpn. J. Appl. Phys., 24 600 (1985)]. Silicon used as external standard. PSC: oP12. 2.5136 16 031 1.5656 <1 232 2.4641 4 221 1.5380 3 042 2.4369 7 0400 1.5266 3 322 2.4037 12 131 1.5116 1 $142,260$ 2.3919 9 320 1.4762 <1 351 2.3366 2140 1.4692 2 530 2.1992 3 311 1.4408 2 $242,332$ 2.0972 8 330 1.4124 <1 261 2.0972 8 330 1.4124 <1 261 2.0972 8 330 1.4124 <1 261 2.0972 8 330 1.4124 <1 261 2.0477 1 321 1.3779 1 531 2.0131 5 141 1.3713 2 152	$\frac{D_{\rm x}}{Color} Orange$	2.5507	3	230	1.5730	1	440
Dikarev, E., Moscow State University, Moscow, Russia. CAS#: 14794-85-5. Prepared by heating of stoichiometric mixture of Sb, S and SbBr3 in sealed silica tube at 360 C for 10 hours followed by an- nealing at 310 C for 6 days. SbSBr melts with decomposition. Single crystal cell: $a=8.212$, $b=9.720$, $c=3.963$, S.G.=Pnam, Z=4, [Inushima, T., Uchinokura, K., Jpn. J. Appl. Phys., 24 600 (1985)]. Silicon used as external standard. PSC: oP12. 2.4641 2.4369 2.3919 4 2.3366 221 140 1.5380 1.5266 3 322 322 2.4037 2.3919 12 9 320 1.4762 1.4692 <1 2 2 3311 1.4124 <1 2072 2 20972 3311 1.4124 1.4408 2 2.0594 2 2.0131 2 321 2 1.3779 2 1 See follwing agrid 5 141 1.3713 2 2 152	Pattern taken at 26 C. The sample was provided by Shevelkov A	2.5136	16	031	1.5656	<1	232
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dikarev E Moscow State University Moscow Russia CAS#:				1		0.40
and SbBr3 in sealed silica tube at 360 C for 10 hours followed by annealing at 310 C for 6 days. SbSBr melts with decomposition. Single crystal cell: $a=8.212$, $b=9.720$, $c=3.963$, S.G.=Pnam, Z=4, [Inushima, T., Uchinokura, K., Jpn. J. Appl. Phys., 24 600 (1985)]. Silicon used2.4369 2.4037 2.391912 9 320 1401.5266 1.5116 1 1.4762 2.33663 1.422,2602.4922 2.39193.311 2.33661.4408 2 2.09722 8 330 1.41242 2.4037 2.33662 2.09722.1992 2.09723 8 330 1.4124311 2.4007 2.01311.4108 2.22 2.01312 2.0131See follwing cord5 1411.3713 1.37132 2.152	14794-85-5. Prepared by heating of stoichiometric mixture of Sb. S	2.4641	4	221	1.5380	3	042
nealing at 310 C for 6 days. SbSBr melts with decomposition. Single crystal cell: $a=8.212$, $b=9.720$, $c=3.963$, S.G.=Pnam, Z=4, [Inushima, T., Uchinokura, K., Jpn. J. Appl. Phys., 24 600 (1985)]. Silicon used121311.51101142,2002.391993201.4762<1	and SbBr ₃ in sealed silica tube at 360 C for 10 hours followed by an-	2.4369	12	040	1.5266	5	322
$\begin{array}{c} \text{crystal cell: a=8.212, b=9.720, c=3.963, S.G.=Pnam, Z=4, [Inushima, T., Uchinokura, K., Jpn. J. Appl. Phys., 24 600 (1985)]. Silicon used as external standard. PSC: oP12. \\ \begin{array}{c} 2.1992 \\ 2.0972 \\ 2.0972 \\ 2.0972 \\ 2.0974 \\ 1 \\ 2.0131 \\ 5 \\ 141 \\ 1.3713 \\ 2 \\ 1.4124 \\ 400 \\ 1.3986 \\ <1 \\ 360 \\ 1.4124 \\ <1 \\ 261 \\ 360 \\ 1.4124 \\ <1 \\ 261 \\ 360 \\ 2.0477 \\ 1 \\ 2.0131 \\ 5 \\ 141 \\ 1.3713 \\ 2 \\ 152 \\ \end{array}$	nealing at 310 C for 6 days. SbSBr melts with decomposition. Single	2.4057	12 Q	320	1.3110		142,200
T., Uchinokura, K., Jpn. J. Appl. Phys., 24 600 (1985)]. Silicon used 2.1992 3 311 1.408 2 $242,332$ as external standard. PSC: oP12. 2.1992 3 311 1.4408 2 $242,332$ 2.0972 8 330 1.4124 <1 261 2.0594 1 400 1.3986 <1 360 2.0477 1 321 1.3779 1 531 See following cord 5 141 1.3713 2 152	crystal cell: a=8.212, b=9.720, c=3.963, S.G.=Pnam, Z=4, [Inushima,	2.3366	2	140	1 4692	$\frac{1}{2}$	530
as external standard. PSC: oP12. 2.1992 2.0972 3 8 311 330 1.4408 	T., Uchinokura, K., Jpn. J. Appl. Phys., 24 600 (1985)]. Silicon used	2.5500	2	110	1.1052		550
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	as external standard. PSC: oP12.	2.1992	3	311	1.4408	2	242,332
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.0972	8	330	1.4124	<1	261
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.0594	1	400	1.3986	<1	360
2.0131 3 141 $1.3/13$ 2 132		2.0477		321	1.3/79		531 152
See toowing card	See follwing card	2.0151	3	141	1.3/13	2	132

Формат «карточки» (записи о стандарте) PDF-2 в WinXPow.

[81-1286] PDF-2 Sets	1-99 Quality: C	Wavelength: 1.540598
Lead Vanadium Oxide Pho	sphate	
Pb3 (P V 08)		
Rad.: CuKal (1.54060)	Filter:	d-sp: calculated
I/Icor.:8.52	Cutoff: 17.7	Int.: calculated
Ref.: Calculated from I	CSD using POWD-12++, (1997)
Sys.: Rhombohedral	S.G.: R-3m (166)	V(redu): 187.6
a: 5.64410(20) b:	c: 20.40310(60)	C: 3.6149
A: B:	C:	Z: 3 mp:
11 ¹ D ¹		
Dx: 7.357 Dm:	SS/FOM: F30= 999	.9 (.0001, 33)
Dx: 7.357 Dm: ICSD: 072664	SS/FOM: F30= 999	.9 (.0001, 33)
Dx: 7.357 Dm: ICSD: 072664 Ref.: Kiat, J M., Garn 103, (1993), 490	SS/FOM: F30= 999 nier, P., Calvarin, G., Pi	.9 (.0001, 33) not, M., J. Solid State Chem.,
Dx: 7.357 Dm: ICSD: 072664 Ref.: Kiat, J M., Garn 103, (1993), 490 ea: nwB:	SS/FOM: F30= 999 nier, P., Calvarin, G., Pi ey: Sig	.9 (.0001, 33) not, M., J. Solid State Chem., n: 2V:
Dx: 7.357 Dm: ICSD: 072664 Ref.: Kiat, J M., Garr 103, (1993), 490 ea: nwB: REM TEM 300. // REI	SS/FOM: F30= 999 nier, P., Calvarin, G., Pi ey: Sig M RVP.	.9 (.0001, 33) not, M., J. Solid State Chem., n: 2V:
Dx: 7.357 Dm: ICSD: 072664 Ref.: Kiat, J M., Garr 103, (1993), 490 ea: nwB: REM TEM 300. // REI Hanawalt: 3.13/X 2.82/8	SS/FOM: F30= 999 nier, P., Calvarin, G., Pi ey: Sig M RVP. 4.75/3 3.53/3 2.10/3 1.68	.9 (.0001, 33) not, M., J. Solid State Chem., n: 2V: /2 1.88/1 2.20/1 1.77/1 1.63/1
Dx: 7.357 Dm: ICSD: 072664 Ref.: Kiat, J M., Garri 103, (1993), 490 ea: nwB: REM TEM 300. // REI Hanawalt: 3.13/X 2.82/8 Max-d: 6.80/1 4.75/3	SS/FOM: F30= 999 nier, P., Calvarin, G., Pi ey: Sig M RVP. 4.75/3 3.53/3 2.10/3 1.68 4.41/1 3.53/3 3.40/1 3.13	.9 (.0001, 33) not, M., J. Solid State Chem., n: 2V: /2 1.88/1 2.20/1 1.77/1 1.63/1 /X 2.82/8 2.61/1 2.50/1 2.43/1
Dx: 7.357 Dm: ICSD: 072664 Ref.: Kiat, J M., Garri 103, (1993), 490 ea: nwB: REM TEM 300. // REI Hanawalt: 3.13/X 2.82/8 Max-d: 6.80/1 4.75/3 d[A] 2Theta Int.	SS/FOM: F30= 999 nier, P., Calvarin, G., Pi ey: Sig M RVP. 4.75/3 3.53/3 2.10/3 1.68 4.41/1 3.53/3 3.40/1 3.13 h k 1 d[A]	.9 (.0001, 33) not, M., J. Solid State Chem., n: 2V: /2 1.88/1 2.20/1 1.77/1 1.63/1 /X 2.82/8 2.61/1 2.50/1 2.43/1 2Theta Int. h k l
Dx: 7.357 Dm: ICSD: 072664 Ref.: Kiat, J M., Garn 103, (1993), 490 ea: nwB: REM TEM 300. // REN Hanawalt: 3.13/X 2.82/8 Max-d: 6.80/1 4.75/3 d[A] 2Theta Int. 6.8010 13.007 10	SS/FOM: F30= 999 nier, P., Calvarin, G., Pi ey: Sig M RVP. 4.75/3 3.53/3 2.10/3 1.68 4.41/1 3.53/3 3.40/1 3.13 h k l d[A] 0 0 3 1.360	.9 (.0001, 33) not, M., J. Solid State Chem., n: 2V: /2 1.88/1 2.20/1 1.77/1 1.63/1 /X 2.82/8 2.61/1 2.50/1 2.43/1 2Theta Int. h k l 2 68.986 6 0 0 15

«Подбазы» БД PDF-2 (на примере ящиков 42 и 50).

Sub-File	Entries	Sub-File	Entries
Inorganic	43.308	Zeolites	626
Organic	16.539	Explosives	149
Metals and Alloys	11.630	Polymers	248
Minerals	3.954	Cement	360
Forensic Materials	3.612	Superconductors	139
Common Phases	3.202		
As of Set 42			

Sub-File	Entries	Sub-File	Entries	
Inorganic	109.864	Zeolites	1.654	
Organic	23.466	Explosives	190	
Metals and Alloys	26.921	Polymers	608	
Minerals	14567	Cement	392	
Forensic Materials	3.722	Superconductors	2579	
Common Phases	3.802			
As of Set 50		All w/excl	118.642	

Данные от качестве дифракционного стандарта

<u>Знак ``*".</u>

- 1. Химически охарактеризован.
- 2. Интенсивности измерены инструментально.
- 3. Хороший диапазон и сглаженный разброс интенсивностей
- 4. Линии с *d*≤2.50Å : 2.222Å. *d*≤1.200Å : 1.1111Å.
- 5. Нет серьезных систематических ошибок.
- 6. Нет линий с|∆2θ|≥0.05°.
- Средняя величина |∆2θ|≤0.03°.
- 8. Нет неиндицированных, примесных линий или линий, не

соответствующих погасаниям.

<u>Знак "I"</u>.

- 1. 1-3,6 выполняются менее жестко.
- 2. Линии с *d*≤2.00Å : 1.111Å.
- 3. Нет линий с|∆2θ|≥0.2°.
- Средняя величина |∆2θ|≤0.06°.

5. Неиндицированных, примесных линий или линий, соответствующих погасаниям ≤2, среди них нет сильнейших.

Данные от качестве дифракционного стандарта

<u>Знак "О"</u>.

- 1. 1-4 могут частично не выполняться.
- 2. Неиндицированых, примесных линий или линий, не

соответствующих погасаниям >3.

3. Одна из 3-х сильнейших линий непроиндицирована.

Отсутствие знака (В)

1. Не выполняются критерии *, i, O.

<u>Знак "С"</u>.

2. Рентгенограмма рассчитана из структурных данных

Название	Содержание	Центр	
Cambridge Structural Database (CSD)	Organic, Organo-metallic	Cambridge UK	
Inorganic Crystal Structure Database (ICSD)	Inorganic Materials	Karlsruhe FRG	
NRCC Metals Data File (CRYSTMET)	Metals and Alloys	Ottawa Canada	
Protein Data Bank (PDB)	Biological Macromolecules	Brookhaven USA	
NBS Crystal Data NBS (CD)	Inorganic and Organic	Gaithersburg USA	

6. ...

Критерии качества для автоматического поиска.

- где n общее число линий на рентгенограмме;
 - s для стандарта
 - о для наблюдаемой линии

После автоматического поиска результаты по умолчанию упорядочены по $F(\theta)$, после ручного – по номеру стандарта

3. Программное обеспечение - WinXPow

Поиск – только по пикам (необходим предварительный профильный анализ)

Nonlin1 Chi2= 5.868 R= 15.3% nPar=215 Npts=7251 T= 0.0s

400.0

800.0 400.0

<u>"</u> s	EARCH	H - User :	File: E:\Max\work\teaching\QPA_RR-data\RR1E-PEAKS1.pft
ile	Select	<u>S</u> earch <u>V</u> iew	/ Edit Options Help
ഷ		M M A 2	
	1	[77-2251]	(Ca F2)0.85 (Y F3)0.15 / Calcium Yttrium Fluoride
	4	[77-2245]	(ca F2 / Celaium Fluoride
	э 4	[77-2245]	(Ca F2)0 94 (V F3)0 06 / Calcium Vttrium Eluorida
	75	[77-2248]	(Ca F2)0.54 (T F3)0.56 / Calcium Tetrium Fluoride
	6	[77-2247]	(Ca F2)0.85 (Y F3)0.15 / Calcium Yttrium Fluoride
	7	[37-1378]	Y6 Te5 019.2 / Yttrium Tellurate
	8	[77-2249]	(Ca F2)0.68 (Y F3)0.32 / Calcium Yttrium Fluoride
	9	[35- 816]	Ca F2 / Calcium Fluoride / Fluorite, syn
	10	[48-2115]	C18 H16 N2 O4 Zn / Zinc bis(8-quinolinol) hydroxide
	11	[77-2093]	Ca F2 / Calcium Fluoride
	12	[77-2094]	Ca F2 / Calcium Fluoride
	13	[86-2479]	Sm2 O3 / Samarium Oxide
	14	[79-2115]	Sm3 Sb5 O12 / Samarium Antimony Oxide
	15	[75-2015]	Pa 02.2 / Protactinium Oxide
	16	[75- 206]	H Cl / Hydrogen Chloride
	17	[31-1570]	C8 H1U N4 OZ ! H2 O / Caffeine hydrate
	18	[79-2205]	2n 0 / 2ind Oxide
	20	[36-1451]	7n O / Zinc Ovide / Zincite syn
	21	[75- 80]	La1 52 H2 48 08 9 / Lanthanum Hranium Oxide
	22	[43- 158]	Sm3 Sb5 012 / Samarium Antimony Oxide
	23	[77- 379]	Na Si Al O4 / Sodium Aluminum Silicate
	24	[75- 132]	Ce.17 U.83 O2 / Cerium Uranium Oxide
	25	[74-2432]	U 02.13 / Uranium Oxide
	26	[15- 813]	Sm2 O3 / Samarium Oxide
	27	[46-1212]	A12 O3 / Aluminum Oxide / Corundum, syn
	28	[77-2041]	Na Er F4 / Sodium Erbium Fluoride
	29	[74-1282]	Zr3 O / Zirconium Oxide
	30	[75- 154]	Nd.30 Ce.70 O1.85 / Neodymium Cerium Oxide
	31	[4- 38]	C6 H11 kg O2 / Silver caproate
	32	[75- 81]	La1.6 U2.4 08.81 / Lanthanum Uranium Oxide
	33	[10- 173]	Al2 03 / Aluminum Oxide / Corundum, syn
	34	[75- 548]	Pr.5 Gd.4 01.520 / Praseodymium Gadolinium Oxide
	35	[78_ 402]	Nd 5 Pa 5 02 / Neodumium Protectinium Ovido
	30	[33_1813]	Nu.5 Fa.5 02 / Neodymium Frotactinium Oxide
	38	[78- 418]	Am.5 Pa.5 02 / Americium Protactinium Oxide
	39	[18-1895]	C6 H6 Åg O3 P / Silver phenvl phosphonate
	40	[82- 255]	Y Ba2 Cu3 O6.35 / Yttrium Barium Copper Oxide

3. Программное обеспечение – Crystallographica CSM

🗘 Crystallographica Sea	rch-Match - [SearchMatch1]							
Search-P	Match PeakList Report Settings Tools Graph Wind	ow Help				_		
	5 ? N @ # # * 1 * 0 %	W 🌇 🏧				lloi	ТНОСТІ	ЬЮ
🗒 Search Match 🛄 Pea	k List 💁 Card Retrieval 🗟 Report				а	втомати		ий поискі
Matched Materials					u		ACCIV	
Pdf No. Name		Formula						
			tch1					
			Settings Tools	Graph Window H	lelp			
Candidate Materials	🛋 🖍 🖾 🖬 🗖		⊞ Heport					
Pdf No. % Name		Formula	Formula AI2 03	6000	1	· · · ·		
42-1468 69 Corundum 10-173 66 Corundum	e eun	NI2.03		-	CPD-1E data - bade CPD-1E peaks Multi-phase profile	iground		
🇙 5-712 65 alpha-C	in the second		- In 🛃 🐼	5000				
▲ 43-1484 64 Corund	Materials Sub-Files Lattice Space Group Colour MC	ist include Must not Include	Formula Zn 0					
2-1468 61 alpha-A	H Standards must include • At least one C All selected elements		Zn 0 Zn 0	4000				J
82-1467 61 alpha-A 375-1864 61 Aluminu	Li Be Only selected elements	BCNO	F CaF2 Zn 0	3000				
75-1863 61 Aluminu	Na Mg Formul	AI SI P S	Zn 0 Cl Ca F2 7:0					1
89-7716 61 Corund	K Ca Sc Ti V Cr Mn Fe Co Ni Cu	Zn Ga Ge As Se	Br CaF2	2000	1		1	
78-2427 61 Aluminu	Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag	Cd In Sn Sb Te	Zn 0 Ca F2					
■ 78-2426 61 Aluminu ■ 74-323 60 aloba-0	Cs Ba La Hf Ta W Be Os Ir Pt Au	Ha TI Pb Bi Po	Ca F2 Ca F2	1000		 }∏	A	
 82-1399 60 Aluminu 			CaF2 CaF2	0				<u>AUNAL</u>
36-1451 60 Zincite, 74-1081 59 alpha-C	Ce Pr Nd Pm Sm Eu Gd	Tb Dy Ho Er Tm Yb	(CaF2)0. (CaF2)0.					
271-1683 58 alpha-A	Clear Th Pa U Np Pu Am Cm I	3k Cf Es Fm Md No	Zr3 0 (Ca F2)0.	200		Single-Phase Powder Pattern	Carda Daniara 🗍	
▲ 46-1212 58 Corund - ▲ 5-664 57 Zincite			(Ca F2)0. Zr3 0	400-0	1	Pattern-Wide Parameters	Juaie r actor	
89-7717 57 Corund		при <u>м</u> енитв	(CaF2)0. (CaF2)0. Zp(0H)			Two Theta Start 5	End 150.00000	
			Zr 0.333 Nd.30 Ce.	800		Step U.U200000 Ze Include K-Alpha2 🔽	ero Error U	
			La1.6 U2.4 Zr3 0			Include Background	Background	
	о пикам/лифрактог	памме	Nd1.64 PE Na Er F4	800		Peak Shape Peaks Only Gaussia	n Lorentzian	
		Parine	Mg Se N H4 B F4	1000		Pseudo-Voigt Pearson \	/II Param 1.1	
• ПОИСК ПО	о разности		La1.52 U2 Ce.17 U.8			Pask Videb		
• Удобный	і интерфейс		Zn 0 Zr 0.27	1200	25.0	U 0.014 V -0.008	W 0.006	360
H • • • • • •			Zr 00.35 Pr12 022		200	OK Cancel	Help	
				ļ				

Финальная стадия поиска – визуальный анализ соответствия «стандарт – эксперимент»

Критерии соответствия:

- 1. Все линии стандарта должны присутствовать на экспериментальной дифрактограмме
- 2. Соотношение интенсивностей?
- 3. Качество стандарта *, I, C
- 4. Химический состав «образец/стандарт»

Скол и порошок $ZrO_2/AI_2O_3/SiO_2$ композита

Влияние геометрии съемки на текстурирование.

 Качественный анализ сложных многокомпонентных образцов по-прежнему очень трудоемкая и не всегда однозначно решаемая задача
 Желательны независимые данные о хим. составе (ЛРСА или аналог.)
 Необходимо тщательная подготовка образца для минимизации текстуры

Семинар по WinXPow!

