

Лаборатория Неорганической Кристаллохимии Кафедра Неорганической Химии, Химический Факультет МГУ

Дифракция рентгеновского излучения на нанообъектах.

Москва 2014. Курс для ФНМ МГУ.

- Форма рефлекса: инструментальный вклад и вклад образца.
- 2. Понятие ОКР. Влияние размера ОКР на полуширину рефлекса.
- З. Дифракция на напряженных кристаллах.
 Микронапряжения.
- Методы расчета размеров ОКР. Метод Шеррера. Метод Вильямсона-Холла
- Работа с Фурье-трансформантами. Метод Уоррена-Ауэрбаха.
- 7. Метод WPPM

В ненулевую ширину рефлекса вносят вклад разнообразные факторы.

Инструмент:

- дефокус пучка
- дефокус образца
- несовершенство поверхности
 - протяженный
 - фокус трубки
 - неидеальная коллимация
- протяженный
 спектр источника
 и т.д. и т.п.

1. Форма рефлекса

Общий вклад инструмента:

$$K(2\theta) = W(2\theta) * J(2\theta)$$

Инструментальная функция:

$$J(2\theta) = J_1(2\theta) * J_2(2\theta) * \dots * J_i(2\theta)$$

 $J_i(2 heta)-$ аберрация отдельного элемента

1. Форма рефлекса

Асимметрия функции инструмента:

Все элементы рентгеновской оптики вносят свой вклад в функцию инструмента и спектральную функцию!

1. Форма рефлекса – «идеальный» образец

Стандарт (например, LaB₆ NIST) – близкий к *б*-функции вклад образца

Используя стандарт, можно экспериментально определить общий вклад инструмента

ОКР – область когерентного рассеяния – упорядоченный участок вещества, на котором возможно когерентное рассеяние волнового пакета рентгеновского излучения

Кристаллиты

ОКР

Длина когерентности для CuKα ~ 1 мкм. ОКР > 1 - 2 мкм можно считать бесконечно большими.

В первом приближении ОКР не должна содержать протяженных дефектов (дислокации, плоскости сдвига и т.п.)

2. Дифракция на конечном кристалле

2. Дифракция на конечном кристалле

$$F\rho_{0} * Ff = \sum_{h,k,l} F_{hkl} Ff(\mathbf{q} - \mathbf{q}_{hkl})$$

Т.е. каждый рефлекс размазывается в $Ff(\mathbf{q} - \mathbf{q}_{hkl})$

Интересно, что интегральная интенсивность рефлекса:

$$I_{hkl} = \left|F_{hkl}\right|^2 \int_{\mathbf{q}} \left|Ff\left(\mathbf{q} - \mathbf{q}_{hkl}\right)\right|^2 d\mathbf{q}$$

Согласно равенству Парсеваля:

$$\int_{\mathbf{q}} \left| Ff\left(\mathbf{q} - \mathbf{q}_{hkl}\right) \right|^2 d\mathbf{q} = \int_{\mathbf{r}} \left| f\left(\mathbf{r}\right) \right|^2 d\mathbf{r} \equiv V_{cryst}$$

Простейшие функции формы – куб, параллелепипед, шар...

2. Влияние размера ОКР на полуширину рефлекса

При уменьшении размера дифракционной решетки максимумы «размазываются». Это легко наблюдать для видимого света.

Аналогичное явление, очевидно, есть и для рентгеновского излучения.

Интерференционная функция Лауэ для кубических доменов кубического кристалла

$$I = \frac{\left|F\right|^{2}}{V^{2}} \cdot \frac{\sin^{2}\left(\pi Nh\right)}{\sin^{2}\left(\pi h\right)} \cdot \frac{\sin^{2}\left(\pi Nk\right)}{\sin^{2}\left(\pi k\right)} \cdot \frac{\sin^{2}\left(\pi Nl\right)}{\sin^{2}\left(\pi l\right)}$$

2. Влияние размера ОКР на полуширину рефлекса

Физический смысл имеет интегральная ширина рефлекса β!

$$\beta = \frac{I_{\text{int}}}{I_{abs}}$$

$$\beta \leftarrow \xrightarrow{???} FWHM$$

Рассматривая функцию Лауэ, можно рассчитать:

$$\beta^{*} = \frac{\int_{-\infty}^{+\infty} I(s)ds}{I(0)} = \frac{\int_{-\infty}^{+\infty} \frac{\sin^{2}(\pi Nas)}{(\pi as)^{2}}ds}{\lim_{s \to 0} \frac{\sin^{2}(\pi Nas)}{(\pi as)^{2}}} = \frac{Na}{(Na)^{2}} = \frac{1}{D}$$

3. Дифракция на напряженных кристаллах

- $\beta = 4\varepsilon \tan \theta,$ $\eta \equiv \beta \cot \theta$
- ϵ максимальная деформация
- η кажущаяся деформация

4. Методы расчета параметров микроструктуры

Профильный анализ – определение положения, интенсивностей и полуширин/интегральных ширин дифракционных максимумов (рефлексов) Дифрактограмма: $I_{exp}(2\theta)$

Профильный анализ:

$$I_{theor}(2\theta) = B(\theta) + \sum_{i} P_i(2\theta_i, I_i, H_i, 2\theta)$$

Цель уточнения:

$$\min \Phi = \sum_{k=1}^{k=N} w_k \left(I_{\exp}^k - I_{theor}^k \right)^2$$

$$w_k = 1/I_{exp}, k$$
 —номер точки

Уточняемые параметры:

- Функция фона В(20) полином
- Вид профильной функции P(20-20_i, H, I)
- Положение 2₀ для каждого рефлекса *i*
- Полуширина FWHM_i для каждого рефлекса i
- Интенсивность І_і для каждого рефлекса і

«Хвосты» *L(x)* намного «длиннее»!

Зачастую необходимо использовать промежуточные функции:

Функция Войта (псевдо-Войт, *PV*): $PV(x) = \eta G(x) + (1 - \eta)L(x), \eta = 0 - 1$

Обратите внимание на пределы фактора формы – при выходе за границы диапазона использование аналитических функций некорректно!

Метод Шеррера

(его совершенно зря называют методом Дебая-Шеррера ☺)

$$\beta = \frac{K_{\beta}\lambda}{r\cos\theta}$$

Необходимо вычесть инструментальный вклад!

Для полидисперсной системы:

$$\beta = \frac{\lambda}{\langle D \rangle_V \cos \theta}, \langle D \rangle_V = \frac{M_4}{K_\beta M_3},$$
$$M_i = \int D^i g(D) dD$$

Вещество	Съемка	<i>β</i> , °2θ	<i>β</i> , °2θ	λ	<i>г</i> , нм
Кварц SiO ₂	X'tra	0.062	26.603	1.5406	130
Кремний Si (NIST 1978a)	ID31 ESRF	0.003	7.3333	0.4012	719
Ві ₂ Те ₃ (исходный)	X'tra	0.1728	27.824	1.5406	47
Ві ₂ Те ₃ (5 часов помола)	X'tra	0.673	27.9	1.5406	12

4. Метод Вильямсона-Холла.

Учет влияния размеров ОКР и микронапряжений простой линеаризацией:

4. Метод Вильямсона-Холла.

4. Применение полнопрофильных методов

 $FWHM_G^2 = W + V \tan \theta + U \tan^2 \theta + \frac{P}{\cos^2 \theta}$ FWHM_L = $\frac{X}{\cos \theta}$ + Y tan θ + Z W, V, Z = 0В варианте FP уточняются непосредственно параметры микроструктуры Зависимость среднего размера ОКР (а) и концентрации микронапряжений (б) 70 от времени механоактивации ⁵⁰ ни 30 a) 10 -0 50 100 150 200 250 300 0.005 0.004 **б** 0.003 ພົ 0.002 б) 0.001

0

50

100

150

t, мин

200

250

300

Powder options	
Cell Radiation Profile Asymmetry Sample Corrections Various None Primary radius [mm] 173 Simpson Secondary radius [mm] 173 Berar-Baldinozzi Swidth [mm] 173	ПО «Jana 2006»
FDS angle [deg] 1 Source length [mm] 12 Sample length [mm] 15 RS length [mm] 12 Primary soller [deg] 5.1 Secondary soller [deg] 5.1	Powder options Cell Radiation Profile Asymmetry Sample Corrections Various Peak-shape function
LSC OK	Anisotropic particle broadening Proadering direction Axial method Edit tensor parameters Esc Ok

иногда отражает анизотропную форму ОКР

Моделировать – сложно - разложение по сферическим гармоникам

$$FWHM_{L} = \left(\frac{(LX + LXe\cos\phi_{1})}{\cos\theta} + (LY + LYe\cos\phi_{2})\tan\theta\right)$$

 ϕ_1 – угол между осью анизотропного уширения (размер ОКР) и рефлексом

Метод Уоррена-Авербаха.

$$I(s) = k(s) \sum_{-\infty}^{+\infty} A_L e^{2\pi i L s}$$
$$A_L = A_L^S A_L^D$$
$$\langle D \rangle_S = \frac{M_3}{K_K M_2}$$

- 1) Необходимо использовать минимум два рефлекса одной зоны для расчета вклада остаточных напряжений
- Метод Шеррера средневзвешенный по объему размер ОКР, поэтому результаты отличаются.
- 3) Комбинация двух методов может дать нам распределение частиц по размерам:

 Метод Шеррера: "volume weighted column length" (VWCL)
 Методы Уоррена-Ауэрбаха: "surface-weighted column length" ("area-weighted", SWCL)

Вообще не использует аналитические функции.

Расчет формы рефлекса производится путем Фурье-синтеза.

$$I_{\{hkl\}}\left(s_{hkl}\right) = k\left(s_{hkl}\right) \sum_{hkl} w_{hkl} \int_{-\infty}^{+\infty} C_{hkl}(L) e^{2\pi i L\left(s_{hkl} - \delta_{hkl}\right)} dL$$

Вклад вносят все несовершенства структуры (включая антифазные границы, дислокации и т.п.)

$$C_{hkl}(L) = T_{pV}^{IP} \cdot A_{\{hkl\}}^S \cdot A_{\{hkl\}}^D \cdot \left(A_{hkl}^F + iB_{hkl}^F\right) \cdot A_{\{hkl\}}^{APB} \cdot \dots$$

Можно рассчитывать распределение величин!

6. Метод WPPM

Сферические наночастицы CeO₂. Метод WPPM (M.Leoni, PM2K)

6. Сложные дефекты в слоистых структурах

Монтмориллонит

7. Аморфное состояние

7. Аморфное состояние

Стекло Sn₂P₂O₇

7. Аморфное состояние

Sec.	the state	man	· ···	
The search		and the set		
				1
-4.1			Her Call	
			And the second	
a la se	10	1/2		K
30kV	x300 50	um 0647	12 50 BEC	

Nº	α-ZrO ₂	α -Al ₂ O ₃	α -SiO ₂	β-ZrO ₂	Стеклофаза
1-M	33.83	50.49	1.80	0.52	13.37
1-SB	35.17	51.24	1.14	0.16	12.29
2-BB	31.07	52.41	1.36	0.03	15.13
3-M	33.53	48.72	2.30	0.66	14.80
7-M	32.35	51.80	1.51	0.29	14.05

- На форму рефлекса влияют как особенности инструмента, так и несовершенство образца.
- 2. Несовершенство образца малый размер ОКР, повышенная концентрация дефектов.
- 3. Методы Шеррера, Уильямсона-Холла быстрый и не очень точный путь оценки микроструктуры.
- Метод Уоррена-Ауэрбаха, и, особенно, метод WPPM сложные высокоточные методы расчета не только размеров OKP, но и параметров дефектности.
- 5. Аморфные фазы = широкие максимумы (гало) на дифрактограммах.
- 6. По площади гало можно провести экспресс-оценку количества аморфной фазы.