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The definitions for important Rictveld error indices are defined and discussed. It is shown that while
smaller error index values indicate & better fit of a model to the data, wrong models with poor quatity
data may exhibit smaller values ervor index values than some superb models with very high quality
data. © 2006 International Centre for Diffraction Data. {DOI: 10.1154/1.2179804]

I. INTRODUCTION

People mastering Rietveld reflnement techniques com-
monly ask the same questions: What do the various Rietveld
discrepancy values, ie., goodness-of-ft, ¥%, and R factors
mean? Alse, which ones are most important? Finally, what
values allow one to distinguish good refinements from poor
ones? These questions are also important to people who re-
view Rietveld results, as well as individuals trying to decide
if the resalts in a paper are likely to be trustworthy. These
discrepancy values are only one criterion for judging the
quality of Rictveld fits; of greater importance is the “chemi-
cal reasonableness” of the model, Also, as will be discussed
further, graphical analysis of a fit is very valuable.

In this asticle, 1 wili explain how several of the most
important of these discrepancy terms arise, what they mean,
and what they measure, as well as slipping in a few of my
own opinions—which may not be universally held in the
field. But to start with the last question, there is no simple
way fo distinguish a good fit from one that is just plain
wrong based on R factors or other discrepancy values. A
large number of Rietveld indices have been proposed, but |
have yet to see one that can be used as an absolute measure
of refinement quality. The reason for this should be clear by
the end of this article, but 1o get started, let’s define the
concepts needed for this discussion. In the following para-
graphs, when a ferm is first defined, it is presented in bold
face to make the definition easier to see.

Diffraction data are a set of intensily values measured at
a set of specific momentum transfer (Q) values, which are
usually expressed as 28 sellings, 1t shoutd be noted that dif-
fraction measurements can aiso be made with fixed 24 while
the wavelength varies, for example, in time-of-flight or
energy-dispersive diffraction. However, for convenience, 1
will assume that data are collected as a function of 28 for this
paper. By convention, the infensity values arc labeled y,;,
where O indicates these are obssrved values and 7 indicales
the intensity was measured at 26 value 26, To perform
Rietveld analysis, we must have an uncertainty estimate for
Yo.» which I will label olyg,]. In the past, this was called
the estimated standard deviation (esd), but crystaflographic
convention now uses the term standard uncertainty (s.u.)
for this (Schwartzenbach el al., 1995, 1996). The meaning of
olyo,] is that if we knew the “true” value for this intensity,
which I will label yr;, say, by measuring it an infinite num-
ber of times, then on average yo; will be xaly, ;] of yy,.
Another way o express this is that ((yp;~{yo.)%
=0¢?[yp ), where () indicates the expected value. When in-
tensities are measured by directly counting individual pho-
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tons or neutrons arriving at the detector, e.g., pulse counting,
then yo, =0 yo,]- In cases where intensity values incorpo-
rate implicit scaling factors, the s.u. must be computed from
the number of counts and then be scaled by the same factor
as the intensity. (If yo ;=514 ;, where I, ; is the actual number
of counts, then .5'210,,:02[)/0,,»].) Examples where this is
needed include the use of variable counting times or scaling
by a menitor detector or from instruments that report counts
per second. Estimation of experimental uncertainties can be
quite difficult for detectors that do not directly count quanta,
e.g., charge coupled detectors, image plates, or energy-
dispersive detectors thal sutomatically correct for detector
dead time.

li. MODEL ASSESSMENT

In Rietveld analysis, we fit 2 model to the data. If the
model is correct then it will predict what the “true” intensity
values should be. The intensity values simulated from the
maodel will be labeled as yo,;, where the C indicates they are
computed from the model. The Rietveld algorithim optimizes
the model function to minimize the weighted sum of squared
differences between the observed and computed intensity
values, Le., to minimize Xav,(yo;—yp)? where the weight,
labeled as w;, is /0%y, ). Other weighting schemes can be
used, but when errors are purely statistical i nature, the
smaltlest uncertainties in the fit parameters arc obtained
where w;=1/0"y, ;] (Prince, 2004; David, 2004). The most
straightforward discrepancy index, the weighted profile
R-factor (R,,,), foliows directly from the square root of the
quantity minimized, scaled by the weighted intensities: Rip
=Zwilyci~Yo) 2wilyo,)? (Young, 1993).

As a thought experiment, what happens if we have the
ideal model, one which accurately predicts the true value for
cach yg, value? In that case, the average value of (y.;
~yo.? will be equal to o?[ye, ], and the expected value of
W,-(yc,{-myo,,-)2 is one. The that one would obtain with this
ideai model is thus the best possible value that can ever be
obtained for that set of data, provided that the oy, ] values
are correct. This “best possible R,,,,” quantity is a very useful
concept and is called the expected R factor (R,,,). Using N
as a label for the number of data points, Rgxp
=N/Zwi{yo,)? (Young, 1993) (The purist may note that in
fact N should be the nunmber of data points less the number
of varied parameters, a quantily that statisticians call “de-
grees of freedom”, but is better considered as the amount of
statistical overdetermination; for powder diffraction, the
number of data points had better be sufficiently larger than
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the number of varied parameters such that the subtraction of
the latter can be safely ignored.),

A related statistical concept is that of “Chi squared” or
x°. This can be thought about by again considering that the
expected value for (ye;~yo /0% yo,] will be one, when
the model is ideal and s.u. values are correct, The ¥* term
is then defined as the average of these values
X =(UNEyci~yo 2 oyo,] (Young, 1993). Note that
x* can also be determined from the expected and weighted
profile R factors x?=(R,,/R.}*. The single-crystal litera-
ture often uses the term goodness of fit (G) which is defined
by G*=x? Goodness of fit is less commonly used in powder
diffraction. For reasons unclear to me, one never sees a ref-
erence to y, only y%.

During the refinement process, x° starts out large when
the model is poor and decreases as the model produces better
agreement with the data, Mathematically, least-squares re-
finement should never cause ¥* to increase, but in practice
small increases do sometimes occur when paramefers are
correlated. Any Jarge increase is a sign of problems. Other
refinement techniques, such as Monte Carlo, intentionally
allow x* to increase as a way of avoiding false minima.

It should be noted that x* shouid never drop below one,
or equivalently, the smallest that R,,,, should ever be is Ry,
If a refinement resudts in x*<<1, then {(y¢;—yo)% is less
than oi[yo!,-], which means that one of two things is true: (1)
The standard uncertainties for the data must be overesti-
mated or (2) so many parameters have been introduced that
the model is adjusting to fit noise (which should be unlikely
i powder diffraction). When X2 is close to one, there is no
guarantee that the model is correct—there may be many
models that will produce more or less equivalent fits—but
the experimental data are not sufficient fo produce a more
complex and perhaps more correct model. On the other hand,
if at the end of a refinement ¥*% 1, then ecither; (1) The
model is reasonable but the s.u. values are underestimated,
(2) the model is incomplete because there are systematic ef-
fects {errors) in the data that are not expressed in the model,
or (3) the model is wrong, As will be discussed further be-
low, high ¥* values can occur where data are collected 1o
very high precision; in these cases, minor imperfections in
the fit become huge with respect to the experimental uncer-
tainty. However, there are also many cases where x*3 1 in-
dicates results that are completely untrustworthy. There are
many fine papers published with refinements where y*» [,
but the reasons why the fit is statistically poor must always
be well understood in order to differentiaie good results from
garbage,

One important test to make when ¥ 1 is to note the
difference between the ¥ or R,,, value obtained from your
model and the value obtained from a Le Bail or Pawley fit,
where peak intensities are optimized without the constraint
of a structural model (e Bail er al., 1988; Pawiey, 1981}, If
your crystallographic fit is as good as the Pawley/L.e Bail fif,
then experimental features in the data (typically peak shape
or background) are not being modeled properly, but the crys-
tallographic model can no longer be improved. More detailed
analysis is needed to know how these features are affecting
the fit of the integrated intensities before knowing il the re-
sulting model can be trusted. If the converse is true and the
Le Bail fit provides a good fit but the Rietveld fit does not,
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then there are systematic crystallographic problems with
your model. There are some systems that cannot be described
well by conventional models; the result may be very useful
even though it is only approximate, but again analysis is
needed to understand the suitability of the results.

Having a model where x? is far from unity has a very
profound implication with many modern Rietveld programs.
The least-squares minimization method used for Rietveld al-
lows the statistical uncertainty in the data 1o be extrapolated
{o statistical uncertainty in the optimized values for the mod-
el's adjustable parameters (for example, s.u. values for re-
fined atomic coordinates), These values are derived from the
least-squares variance-covariance mairix, but this estimate is
accurate only when y*== 1 (Prince, 2004), Many (but not all)
Rietveld programs treat this problem with a Band-Aid, by
multiplying the derived s.u. values by . The reasons for
doing this are poorly grounded. If the cause of the large y? is
something that has negligible correlation to the parameter in
question, for example imperfections in peak shape to atomic
coordinates, there is little increase in uncertainty due o the
incomplete fit. On the other hand, if there is a significant
correlation between an unmodeled effect in the data (ak.a. a
systematic error) with this parameter, the loss of precision
may be much larger than the factor of G. As an example of
this, consider a fit to a flat-plate sample that is oo thin, so
that the beam penetrates through the sample. The systematic
error due {o this penetration will increase with 26 and thus
will skew atomic displacement parameters (“thermal fac-
tors”). The induced error in these parameters could be quite
severe, and multiplying by G would likely underestimate the
uncertainty. In the case where x*< 1, multiplying the s.u.
values by ¢ reduces them, which is a really bad idea.

The last concept I want to introduce, unlike Ry Royps
and x?, has no statistical basis, but is still very valuable as a
measure of refinement quality. In single-crystal diffraction, R
factors are compuled based on the observed and computed
structure factors, which can be tabeled Fo yy and Fe . te-
spectively. The Fe . values are computed directly from the
crystallographic model as an intermediate in Rietveld refine-
ment; but unlike in single-crystal diffraction, Fy 4y, values
cannot be measured in a powder diffraction experiment due
to the superposition of maltiple reflections into single peaks.
Fortunately, Hugo Rietveld came up with a very nice mecha-
nism for estimating Fep e values as part of his method
(Rietveld, [969). For each point in the diffraction pattern, the
imensity is apportioned between the contributing reflections
according to the ratio of how the Fg .y values contribute to
the calculated ditfraction pattern. This estimates intensity for
overlapped reflections according to the ratios of the com-
puted structure factors. The closer the model is Lo
being “correct,” the more valid this process becomes.
R factors based on the Feuy and Fp .y values can be
computed using the same formulas that are applied for
unweighted  single-crystal — R-factors:  Rp= (3] Fo !
—|Feuh)! Cpl Foul) or based on F2 RF?:(EI:HF?),M.'
= Fl ) (BiaF ) (Young, 1993). The label Ryyrygg i s0me-
times used in the Rietveld literature to refer to reflection
intensity-based R factors, but this term is ambiguous, as it
may refer 1o Ry Rpe, or even Ry [R=Cudomw
L) Conel 0.1 )-
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Figure 1. A demonstration of the effect of background on a Rietveld fit. Two
simulated fits ave shown, where the models have the same discrepancies
from the sinmlated data and where the Bragg intensities and counting times
are equivalent. However, in case (a) no background is present, R,,=23%
and ¥?=2.54, while in case (b), significant background is present, R,
=3.5% and ¥*=1.31.

lil. DISCUSSION

Now that we have all these R-factors defined, why is it
that someone cannot create a rule-of-thumb for at least one
of them, where having a value above some threshold is a
cause for suspicion, but a value below that threshold indi-
cates a refinement that is generally reliable? One reason is
that these indices measure not just how well the structural
mode] fits the diffraction intensities, but also how well we
have fit the background and how well the diftraction posi-
tions and peak shapes have been fit. If a large percentage of
the total intensity in a pattern comes from background, then
firting the background alone can give relatively small X or
R, values, even without a valid structural model (McCusker
et al., 1999), Figure 1 shows how significantly these values
can be affected by background levels. Another reason a rule-
of-thumb test fails is that we can abways improve the x* by
using other types of lower-quality data. Note that counting
longer increases the statistical precision in a diffraction mea-
surement, Indeed, as the total number of counts collected for
& diffraction pattern is increased, Ry, decreases. Paradoxi-
cally, counting longer will usvally increase the difference
between R, and R, and thus make x* worse even though
the model obtained by fitting will be improved. This is be-
cause, when patterns are measured with very large numbers
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of counts, even minor “imperfections” (i.c., features that can-
not be modeled} in the peak shape or peak positions can
make it impossible to obtain small y* or Ry, values. The
imperfections would be no different with shorter counting
times and would produce the same shifts (if any} to the fitted
parameters, However, as the number of counts increases, the
discrepancies belween observed and compuled data will be-
come very large compared to the uncertainty in the intensi-
ties. Likewise, improved instramental resolution is a good
thing—it often provides more crystallographic observables,
so this again allows for more precise (and sometimes more
accurate) models. However, as peak profiles become sharper,
imperfections again become even more obvious, so again
improved data can result in seemingly “worse” discrepancy
indices. Thus, when comparing refinements performed with
differing instruments or conditions, the higher-quality dataset
may provide larger x> or R, values, even though the model
obtained from that data is also of higher guality.

So, if we cannot say a fit with small discrepancy values
is of high guality and a fit with large values is of low quality,
why bother computing these terms? One reason is these are
the only statistically defined parameters that we have; these
arc the terms to use when comparing different models fit to
the same data (deciding exactly how to compare R factors
will come in another article). A second reason is that these
values should be monitored to see that they drop as we pro-
ceed in the refinement, as noted before, When that is not
happening, something is going wrong. Finally, when a re-
finement converges with x° significantly larger than unity,
then there are experimental factors that are not being ac-
counted for by the model, i.c., significant systematic errors
are present. The source(s) of these errors must be understood
and explained to a reader so that it can be decided if the
results can be believed.

What about the reflection-based R factor? One purpose
for this index is to impress our single-crystal crystallogra-
pher coileagues, who may be loath to accept powder diffrac-
tion crystallography. They like to see Ry in the range of a
few percent in single-crystal fits; Rietveld results can fre-
quenily be this good or even better. More seriously, the
Rictveld peak integration method can be quite accurate even
when profiles are irregular. Good agreement between the ob-
served and computed reflection, as demonstrated by obtain-
ing a small value for one of the Ry, indices, provides a
valuable indication that the mode! is doing a good job of
reproducing the crystallographic observations. Conversely,
when these values are more than, say, 5% for Ry or a bit
higher for the other Ry, indices, then the question must be
asked, “Why is the model not fitting better?” Some materials
have structures that are more complex than what can be mod-
eled with standard crystaHographic approaches; the Rietveld
result may be the best that can be done, and may be of great
value, but inspection is needed to understand the discrepan-
cies, and this must be discussed as part of any publication. It
should be noted that the integration used for the Ry, indi-
ces starts to fail when peaks have very long {ails or have
significant unmodeled asymmetry, because parts of the peak
are not included in the intensity estimate. Also, be aware that
Ryyage 18 biased toward the model, since information from the
model is used to apporlion intensity between overlapped se-
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flections. In practice, this is not a major problem, bat it
should be remembered that Ry, has no statistical validity.

Many, many other R-Tactor and discrepancy indices bave
heen suggested for use in Rietveld refinements. This would
be a very long article indeed, if 1 reviewed them afl. Each has
some minor justification. For example, the Durban—Watson
statistic measures if the errors between adjacent points are
correlated or random. When errors are correlated, peaks are
not being fit as well as statistics would predict. However, one
knows this from the value of y%, as fong as experimental
standard uncertaintics are correct. Background adjusted R
factors reduce, but do not eliminate, the contribution of back-
ground ftting—excepl in the cases where background is
poorly fit.

In my experience, the most important way to determine
the quality of a Rietveld fit is by viewing the observed and
caleulated patterns graphically and to ensure that the model
is chemically plausible. Future articles wili discuss these
concepts i more detail.
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Neutron diffraction provides a direct probe for the ordering of spins from unpaired electrons i
materials with miagnetic properties. The ordering of the spins can be modeled in many cases by
adding spin directions to standard crystallographic models. This requires, however, that
crystallographic space groups be extended by addition of a “color” attribute to symmetry operations,
which determines if the operation maintains or flips the direction of a magnetic spin. Rietveld
analysis provides a mechanism for fitting magnetic structure models to powder diffraction data. The
seneral structure and analysis system (GSAS) software suite is commonly used for Rietveld analysis
and includes the ability to compute magnetic scattering. Different approaches are commonly used
within GSAS to create models that include magnetism. Three equivalent but different approaches
are presented to provide a tutorial on how magnetic scattering data may be modeled using
differing treatment of symmetry. Also discussed is how magnetic models may be visualized.
The commands used to run the GSAS programs are summarized within, but are shown in
great detail in supplementary web pages. © 2006 International Centre for Diffraction

Data. [DOE 10.1154/1.2179805]

Key words: magnetic structure, Rietveld analysis, power diffraction, crystallographic education,

nautron scattering

i, INTRODUCTION

Neutrons are extremely valuable as a probe of materials
structure. Neutrons are scattered by atomic nuclei and typi-
cally have better sensitivity to light atoms than X rays, which
are scattered by electrons. Further, nuclear scattering cross
sections for neutron scattering do not vary with sin 6/, so
neutrons provide scattering information over a wider diffrac-
tion range than X rays. However, neutrons also have a non-
zero spin and this causes them to be scatiered by the spin of
unpaired clectrons, when such clectrons are present. When
materials exhibit magnetic properties, this is typically due to
long-range ordering of these unpaired electrons; in these
cases, neutrons will be scattered coherently from the elec-
trons in the ordered domains, just as neutrons are scattered
by the nuclei of atoms. The terms nuclear scattering and
magnetic scattering (better labels would be nuclear diffrac-
tion and magnetic diffraction) are used to separate diffraction
from atoms versus unpaired clectrons. The contributions are
assigned as arising from the “nuclear structure™ and “mag-
netic  struclure,” respectively. While, as noted before,
nuciear-scatfering cross sections are constant, magnetic-
scatlering cross sections decrease with sin 87X, similar to
X-ray scaltering, though form factors differ since X rays
scatter from all electrons, while magnetic scattering of neu-
trons occurs {rom valence electrons. The fact that neuirons
have a relatively strong interaction with unpaired electrons
increases their value considerably as a probe of magnetic
materials,

The ability to model both nuclear and magnetic struc-
tures in powder diffraction data was central to the develop-
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ment of the Rietveld technique. Hugo Rieiveld’s initial Algol
program for full profile fitting was able to model both
nuclear and magnetic structures (Rietveld, 1969). However, a
description of magnetic ordering requires more sophistica-
tion than what is needed for structural descriptions, It should
be mentioned, however, that powder diffraction can be of
fimited power in defermining the details of magnetic order-
ing, due to overlap of symmetry-related reflections. For ex-
ample, in a tetragonal system, the powder diffraction pattern
arising from a set of atoms with moments in the « [or (100)]
direction will be identical to that where the moments are in
the a+b for (110)] direction. In fact, rotating the spin ar-
rangement to any angle in the ab plane will leave the powder
diffraction intensities unchanged (Shirane, 1959). Only
single crystal measurements will demonstrate a difference
between the two models.

To describe the spin direction associated with an atom,
two different conventions are used. Frequently, the spin is
considered as an ordinary (polar) vector, where the vector
magnitude is equal to the spin moment. For magnetic sym-
metry, an alternate approach is used, where the spin is de-
seribed as an axial vector associated with a current loop. In
this case, the axial vector direction is normal to the plane of
the loop and by convention points toward a viewer who sees
the Joop rotation in the clockwise direction. These two ways
of deseribing a vector differ when the application of symme-
try is considered. As an example, a center of symmetry will
invert the direction of a polar vector, but not the direction of
rotation of a current loop; however, while the position of an
axjal vector will be changed by a center of symmetry, the
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