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Abstract 

It is shown that when the observed and calculated 
intensities in a powder diffraction pattern differ 
because of model errors which affect the calculated 
integrated intensities, in addition to the random 
counting errors, Rietveld refinement with weights 
determined solely by counting statistics yields es- 
timated standard deviations for the crystal structure 
parameters which tend to be measures of the precision 
rather than the accuracy of these parameters. Under 
these conditions, e.s.d.'s calculated by Rietveld refine- 
ment may be significantly smaller than those obtained 
by integrated intensity refinement of the same data set. 
A method of adjusting Rietveld e.s.d.'s, to provide 
comparability with integrated intensity refinement, is 
proposed. 

Introduction 

The technique of crystal structure refinement by pro- 
file fitting, using powder diffraction data, pioneered by 
Rietveld (1969) is now widely used. It enables con- 
siderably more information to be obtained from 
overlapping peaks than does the conventional in- 
tegrated intensity method which largely ignores the 
information contained in the peak shapes. In essence, 
the method involves refining parameters describing 
the peak shapes, unit-cell dimensions and crystal 
structure to obtain the best fit between the observed 
and calculated diffraction profiles. In the original 
version the background was removed graphically 
from the experimental data, but some current 
programs include the background with adjustable 
parameters in the calculated profile which signifi- 
cantly improves the accuracy of the background 
estimates (Prince, 1981; Toraya & Marumo, 1980). 

It seems generally accepted that Rietveld refinement 
yields unbiased estimates for the crystal structure 
parameters. However, there is some ambiguity as to 
the physical significance of the estimated standard 
deviations calculated by current Rietveld refinement 
programs. For example, Haywood & Shirley (1977) 
found that it was necessary to multiply the e.s.d.'s for 
the crystal structure parameters by factors of 2 to 3 to 

reconcile the refinements of three sets of profile data 
for tetraiodoethylene. Sakata & Cooper (1979) have 
examined the problem analytically and concluded that 
the correlation of errors in adjacent observations 
could lead to the e.s.d.'s being underestimated in 
Rietveld refinement: on the basis of some experimental 
results they suggested that a factor of at least 2 could 
be involved. 

Subsequently, Hewat & Sabine (1981) and Prince 
(1981) have challenged the analysis of Sakata & 
Cooper and claimed that the usual Rietveld refine- 
ment programs do provide correct c.s.d.'s. However, 
they have demonstrated this only for the case in which 
counting statistics are the sole source of error, which 
probably arises seldom. 

Pawley (1980) has asserted that 'it is probable that 
no published powder refinement has been limited by 
counting statistics'. In principle, if the weights of the 
observations are known, a means of testing this 
assertion is provided by the goodness-of-fit index, S 2, 
which is equal to the function minimized divided by 
the number of degrees of freedom in the refinement, or 
by the standard deviation of an observation of unit 
weight, S, which is equal to R(weighted)/R(expected). 
If the weights are put equal to the reciprocals of the 
counting variances, and the discrepancies between the 
observed and calculated intensities arise solely from 
counting statistics, S has an expected value of 
(1 - 1/4v) and a standard deviation of (2v) -1/2, where v 
is the number of degrees of freedom. A survey of 
papers published in Acta Crystallographica B and 
Journal of Solid State Chemistry in the last three years 
revealed 28 papers reporting profile refinements of 
crystal structures: S was reported or implied in only 
nine of these papers, and only for one structure was it 
consistent with the assumption that counting statistics 
were the only source of error. It seems certain there- 
fore that in most cases the effect of other sources of 
error must be considered. 

This paper examines the numerical values and physical 
significance of the e.s.d.'s of the crystal structure par- 
ameters when the structure model yields integrated 
intensities which are not, in the statistical sense, a good 
description of the profile data, as would be indicated by 
a vahie of S outside the limits implied above. 
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Model errors and goodness of fit 

The estimation of standard deviations in Rietveld 
refinement is discussed on the basis of the following 
assumptions. 

(1) The data contains random errors arising from 
counting statistics. 

(2) There are discrepancies between the data and 
the calculated intensities due to inadequacies in the 
model from which the intensities are calculated. 

(3) For simplicity, the defects in the model affect 
only the integrated intensities: the background and 
peak shapes are well described. 

(4) The theoretically resolvable Bragg peaks are 
fully resolved. This assumption also is made for 
simplicity (cf. Hewat & Sabine, 1981; Prince, 1981; 
Sakata & Cooper, 1979). 

Neither of the last two assumptions is likely to be 
satisfied in practice, and some consequences of this 
will be discussed later. 

On this basis, the jth ordinate of the kth peak in a 
profile may be written as 

Yjk(Obs) = GjkIk + big +eik, (1) 

where G jR is the shape function, with ~ j  Gjk= 1, I k 
is the integrated intensity of the kth peak, big is 
the background, and ejk is the counting error, with 
E{ejk}=O and E{e2k} ~ _ Yjk. The corresponding re- 
sidual may be written as 

A Yjk= Yjk(Obs) -  Yjk(Calc)" ejk + GjkAI k, (2) 

where AI k is the model-determined error in the calcu- 
lated integrated intensity of the kth peak. 

In Rietveld refinement the function minimized, Mp, 
which enters into the calculation of the e.s.d.'s is given 
by 

mp= E E wjk(A YJk) 2 (3) 
k j 

and the observation weights, Wjk, are normally set 
equal to 1/Yik(Obs). As Hewat & Sabine (1981) have 
pointed out, there is a formal error in using Y(obs) 
rather than Y(expected) in the weighting scheme, but 
the effect of this approximation is usually negligible. 

Combining (2) and (3), the expected value of Mp in a 
Rietveld refinement may be expressed as 

E{Mp}= E { ~  k ~ [Wjkej2k+WjkG2k(dlk)2]}. (4) 

The first group of terms in the summation is the 
contribution from counting statistics, and is approx- 
imately equal to N-Pp,  where N is the number of 
profile points and Pp is the number of parameters 
describing the profile, i.e. all those parameters in the 
model which do not directly affect the integrated 
intensities. The second group of terms arises from the 

defects in the model for the integrated intensities. 
There are no cross terms in the summation since e~k 
and AIk are independent. There is a formal similarity 
between this equation and Sakata & Cooper's (1979) 
equation (42). 

Provided that the intensity in the background is 
small compared to that in the peaks 

~'~jkGjk2 ~ (1 -- Bk/Ik)/I k, (5) 
J 

where Bk is the integrated background under the 
kth peak, since V~)k=l/Y~k(Obs), ~j  Gjk=l and 
Gik = [ Y~k(Obs) - (bik + e~k]/Ik from (1). For small back- 
grounds, the right-hand side of (5) may be written as 
l/(lk + Bk) to terms of first order in BUlk (this restric- 
tion to small backgrounds may be unnecessarily 
severe, since it is easily shown that for the rather 
artificial case of a rectangular peak superimposed on a 
uniform background the approximation becomes 
almost exact, regardless of the ratio of background to 
peak area), so that 

E{Mp}=N-Pp+ ~(AIk)2/(Ik+Bk). (6) 
k 

Superficially, the summation over k is just Mb the 
function minimized in an integrated intensity refine- 
ment, since 1/(Ik + Bk) is the observation weight in this 
case if the background is estimated with negligible 
variance [cf Sakata & Cooper (1979), equation (16)]. 
However, because of the way in which Alk has been 
defined here, it is actually the limit of that function in 
the absence of counting errors. When the contribution 
from counting errors is included the expected value of 
M r for the data set is given by 

E{Mt}=NB-Pc+ ~(AIk;2/(Ik+Bk), (7) 
k 

where NB is the number of Bragg peaks and Pc is the 
number of crystal structure parameters. 

At this stage it is informative to consider plausible 
numerical values for the goodness-of-fit index S 2. For 
example, consider an integrated intensity refinement 
with Nn - Pc = 50 for which S z = 3"8: such a value for 
S 2 is not atypical and would be unlikely to cause 
concern, even though it clearly indicates that the 
model is not a good fit to the data in the statistical 
sense. If the same data were analysed by Rietveld 
refinement with N - P = 2000 (say), the expected value 
for S 2 would be about 1.07: this value is still outside the 
acceptable range for S 2 for a good model, but much less 
strikingly so than in the integrated intensity case. In 
short, if the number of observations is much larger than 
the number of peaks, as is invariably the case in 
Rietveld refinement, the goodness-of-fit index may be 
rather insensitive to errors in the model for the 
intensities. 
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Calculation of estimated standard deviations 

In a least-squares refinement, the e.s.d, of the ith 
parameter is calculated from the expression 

O-2(pi) : A~ 1M/(N - P )= A/~ 1S 2 ' (8) 

where AiT 1 is the appropriate diagonal element of the 
inverse of the matrix of the normal equations. For this 
direct matrix 

aYik a~k 
A m n :  ~ ~ Wjk Op m Op n . (9) ) 

Hewat & Sabine (1981) have shown that, in the 
absence of background, the matrix elements which 
relate to the crystal structure parameters are the same 
for Rietveld and for integrated intensity refinements: 
consequently the ratio of the e.s.d.'s determined by the 
two methods is equal to the square root of the ratio of 
the goodness-of-fit indices. 

For a profile refinement, WjkW_ 1/t, YjkOCt (where t is 
the counting time for a single profile point) and there 
are N terms in the summations for the matrix elements. 
Consequently, if the profile points are reasonably 
closely spaced in 20, Am, is proportional to T (the total 
counting time for the entire profile), but does not 
depend on N as such if T is unchanged. Thus 

Ai7 I(T)=[To/T]Ai7 l(To) (10) 

and similarly 

~" (AIk)Z/(Ik + Bk)=[T/To]Q, (11) 
k 

where Q is the value of the summation for some 
arbitrary time, To, and is a measure of the non- 
statistical discrepancy between the data and the model 
intensities. Since N is large compared to P, (6), (8), (10) 
and (11) may be combined to yield 

E{aZ(pi)}=AiT~(To)[To/T+Q/N]. (12) 

Clearly then, by sufficiently increasing N and T, the 
standard deviations in a Rietveld refinement may be 
made arbitrarily small, regardless of the value of Q, i.e. 
even if the model provides a poor fit to the data. This 
apparent absurdity arises because the e.s.d.'s cal- 
culated by Rietveld refinement in this limit are 
measures of the precision of the parameters, which in 
the presence of model errors give little information 
about the accuracy of the parameters. 

The physically unsatisfactory nature of the e.s.d.'s 
calculated in a Rietveld refinement may also be seen as 
follows. From a data set collected at steps of 0-05 ° (say) 
in 20, a second set may be derived by adding the 
original data points in pairs, so that it contains only 
half the number of observations. As far as integrated 
intensities are concerned, the contracted data set is 
essentially as good as the original set, and should yield 
the same e.s.d.'s for the crystal structure parameters if 

Table 1. Variation of some figures of merit as ajunction 
of the number of observations in a Rietveld refinement, 

for constant total counting time 

fl-PbO 2 sample: neutron diffraction data. 

Ratio of 
Initial Contracted contracted/ 

data set data set initial 

2641 1321 0"5 
65 65 1 "0 
10 10 1"0 
5 5 I'0 

17.80 12"67 0"712 
23"98 20"35 0"849 

1"347 i'606 l" 192 
0"0355 0"0424 1" 194 

N 
Na 
Pp 
Pc 
Re* 
Rwpf 
S, + 
a[B(Pb)]§ 

*R e : 100[(N - -  Pp - Pc)/ ~'a w,( Y~ - b,)23 '/2. 

i'R,~ o = 100[~i wi(A Yi)2/2i wz~ Yi - hi)2] 1/2. 
~. Sp = R wp/R e" 
§The other e.s.d.'s could not usefully be compared because of 

limitations imposed by the program output format. 

these are to be physically meaningful. However, (12) 
predicts that the e.s.d.'s calculated from the contracted 
data will be increased by a factor of between 1 and x/2, 
depending on the value of Q. This prediction has been 
verified experimentally by Hill (1982) and his results 
are presented in Table 1. 

Bacon & Lisher (1980) have shown that deleting 
every alternate point from a profile data set collected 
at steps of 0.05 ° increased the Rietveld e.s.d.'s by 
almost exactly x/2. This is just the increase predicted 
by (12), and indicates that there is no significant loss of 
information attributable to the greater step width as 
such. 

Discussion 

In considering the reliability of a physical measure- 
ment, it is important to distinguish between precision 
and accuracy. Precision refers to the statistical vari- 
ation likely to occur in the measurement, and this can 
be determined by repeated measurements. Accuracy, 
on the other hand, refers to the difference between the 
measured value of a quantity and its 'true' value, 
assuming that a true value exists. The accuracy can 
never be greater than the precision, and may well be 
much less if the measurements are subject to uncorrec- 
ted systematic errors. A similar distinction applies to 
parameters estimated by the method of least squares, 
and only if the model is good and complete (which 
implies inter alia that any systematic errors in the 
observations are represented by appropriate param- 
eters in the model) are the statistical precision and 
physical accuracy the same. 

When the model used in a least-squares refinement 
does contain errors, the calculated e.s.d.'s for the 
parameters depend on both the statistical and the 
model errors, but the relative importance accorded to 
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the two types of error may depend on the way in which 
the data is handled. Rietveld refinement places more 
emphasis on the statistical errors than does integrated 
intensity refinement, as may be seen by comparison of 
(6) and (7). Consequently, it yields e.s.d.'s which reflect 
the precision rather than the accuracy of the model 
parameters. Furthermore, when the number of profile 
points is large, the goodness-of-fit index ceases to be 
an efficient indicator of model errors. 

Nevertheless, it must be emphasized that this un- 
certainty about the exact significance of the e.s.d.'s 
does not detract seriously from the fundamental merit 
of the Rietveld refinement technique. The parameter 
estimates themselves are unbiased, and almost certain- 
ly more accurate than those that would be obtained by 
the integrated intensity method, since profile methods 
make use of information contained in the peak shapes. 
Moreover, in many cases it is the values of the 
structure parameters which are of primary interest, 
with the estimates of accuracy being of lesser interest. 

However, there are cases in which the accuracy of 
the structure parameters is significant, and in these 
cases some modification of current profile techniques 
may be required. One approach is to analyse profile 
data in two stages (Cooper, Rouse & Sakata, 1981; 
Pawley, 1981; Will, 1981): in the first stage numerical 
values for the integrated intensities are obtained from 
the profile data, without reference to the crystal 
structure parameters, while the second stage is a 
conventional structure refinement using the integrated 
intensities obtained in the first stage. Alternatively, ad 
hoc adjustments to the e.s.d.'s may be made. Pawley 
(1980) suggests that in calculating e.s.d.'s by the 
Rietveld method the actual number of observations 
should be divided by A, the number of observations in 
the average full width at half height of well resolved 
peaks. This has the effect of multiplying all the e.s.d.'s 
by x/A, which is typically in the range 2 to 3. While 
this may be reasonable in practice, it is theoretically 
unsound to apply such a correction without regard to 
how well the model fits the data. 

A different method of adjustment is to convert 
Rietveld e.s.d.'s into equivalent integrated intensity 
e.s.d.'s, on the grounds that these better reflect the 
effect of model errors and are widely accepted by 
crystallographers as measures of accuracy, even if the 
statistical basis for this assumption is dubious. Equa- 
tions (6), (7) and (8) suggest a means of making 
the conversion, which requires Sp 2 = Mp/(N-P)  to be 
replaced by S2=Mt / (Ns-Pc)= 1 +(Mp-N+Pp) /  
(NB - -  Pc) in calculating the profile e.s.d.'s of the crystal 
structure parameters. Since this adjustment is based on 
the assumption that only the integrated intensities are 
subject to model errors it should not be applied to the 
lattice, background or peak-shape parameters. The 
adjustment can be applied to published structure data 
provided that the goodness-of-fit index or equivalent 

Table 2. Adjustment factors for structure- 
parameter e.s.d.'s .for some published Rietveld 

refinements 

LaTaO4" CeTaO4 b 

N 3816 1277 
NB 167* 290 
Pp 17 8 
Pc 19 25 
Re 4"49 8"08 
R,,.p 8"56 10"04 
whence 
Sp 1-906 1-234 
$1 8"256 1 "860 
and 
Sl Sp 4"332 1"497 
References: (a) Cava & Roth (19811: (h) Santoro, Marezio. 
Roth & Minor (1980). 

* Calculated from the lattice parameters and scan range of 
the profile. 

information is available: the other figures required are 
usually given, or can be inferred with fair accuracy. 

When the suggested procedure is applied to the data 
in Table 1 it yields adjustment factors, SI/Sp, of 4.488 
and 3.699 for the full and contracted data sets respec- 
tively: the adjusted values of the e.s.d, for the isotropic 
temperature factor of the lead atom, a[B(Pb)], are 
0.159 and 0.157, so that the adjustment is at least 
internally consistent. Other examples of the procedure 
are illustrated in Table 2. 

The adjustments calculated above are in broad 
agreement with the ad hoc adjustments suggested 
previously, but take specific account of the goodness- 
of-fit index for the structure refinement being consid- 
ered. However, they are still only approximations, 
since in deriving the form of the adjustment it has been 
assumed that the model for the peak shape is good. 
This is seldom true, particularly for X-ray data, so that 
Sp z should be reduced by an uncertain amount corre- 
sponding to the peak-shape error. On the other hand, 
it has been assumed that the Bragg peaks are 
completely resolved, which is also seldom true. 
Consequently, NB should be replaced by the smaller 
number of actually resolved peaks, though this is ill- 
defined when partial overlap of peaks occurs. 
Notwithstanding these criticisms, it is considered that 
the procedure above imposes reasonable restraints on 
the uncritical use of the e.s.d.'s generated by Rietveld 
refinements as measures of the accuracy of the refined 
structure parameters. 

While the general conclusions above also apply 
when profile data is collected photographically, the 
suggested adjustments can seldom be applied. This is a 
consequence of the difficulty in determining absolute 
statistical weights when the observations are optical 
densities, rather than numbers of counts obeying the 
Poisson distribution. Without these absolute weights, 
the goodness-of-fit index is as much a scale factor to be 
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applied to the weights as it is a test for the adequacy of 
the model. 

The author  wishes to thank Drs A. W. Hewat, R. J. 
Hill, J. K. Mackenzie and E. Prince for helpful corre- 
spondence and discussions. 
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